Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 457: 131712, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257376

RESUMEN

The evaluation of leachate leakage at livestock mortality burial sites is challenging, particularly when groundwater is previously contaminated by agro-livestock farming. Supervised machine learning was applied to discriminate the impacts of carcass leachate from pervasive groundwater contamination in the following order: data labeling, feature selection, synthetic data generation, and classification. Physicochemical data of 359 water samples were collected from burial pits (LC), monitoring wells near pits (MW), pre-existing shallow household wells (HW), and background wells with pervasive contamination (BG). A linear classification model was built using two representative groups (LC and BG) affected by different pollution sources as labeled data. A classifier was then applied to assess the impact of leachate leakage in MW and HW. As a result, leachate impacts were observed in 40% of MW samples, which indicates improper construction and management of some burial pits. Leachate impacts were also detected in six HW samples, up to 120 m downgradient, within one year. The quantitative decision-making tool to diagnose groundwater contamination with leachate leakage can contribute to ensuring timely responses to leakage. The proposed machine learning approach can also be used to improve the environmental impact assessment of water pollution by improper disposal of organic waste.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Ganado , Granjas , Contaminantes Químicos del Agua/análisis , Entierro , Aprendizaje Automático Supervisado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA