Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273206

RESUMEN

Lignin is endowed with antioxidant activity due to its diverse chemical structure. It is necessary to explore the relationship between antioxidant activity and the chemical structure of the lignin to develop its high-value utilization. Herein, we employed maleic acid (MA) as a hydrotropic agent to preferably isolate the lignin from distinct herbaceous sources (wheat straw and switchgrass) under atmospheric pressure conditions. The resultant acid hydrotropic lignin (AHL) isolated from wheat straw exhibited high radical scavenging rates, up to 98% toward DPPH and 94% toward ABTS. Further investigations indicated that during the MA hydrotropic fractionation (MAHF) process, lignin was carboxylated by MA at γ-OH of the side-chain, providing additional antioxidant activity from the carboxy group. It was also found that the radical scavenging rate of AHL has a positive correlation with carboxyl, phenolic hydroxyl contents, and the S-G (syringyl-guaiacyl) ratio, which could be realized by increasing the MAHF severity. Overall, this work underlies the enhancement origin of the antioxidant property of lignin, which will facilitate its application in biological fields as an efficient, cheap, and renewable antioxidant additive.


Asunto(s)
Antioxidantes , Biomasa , Fraccionamiento Químico , Lignina , Maleatos , Triticum , Lignina/química , Lignina/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Triticum/química , Fraccionamiento Químico/métodos , Maleatos/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Panicum/química
2.
J Agric Food Chem ; 72(26): 14760-14768, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899439

RESUMEN

Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.


Asunto(s)
Proteínas Bacterianas , Familia de Multigenes , Enfermedades de las Plantas , Sintasas Poliquetidas , Solanum tuberosum , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Enfermedades de las Plantas/microbiología , Solanum tuberosum/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Vías Biosintéticas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo
3.
Int J Biol Macromol ; 259(Pt 2): 129285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211907

RESUMEN

Phenolic acids are promising inhibitors of polyphenol oxidase (PPO), but the effects of carboxyl group and pH on their inhibition effects are still unclear. In this study, methyl cinnamate, cinnamic acid and 4-carboxycinnamic acid were investigated by their inhibitory effects with pH varied from 6.8 to 5.0. Results showed that 4-carboxycinnamic acid had the strongest inhibitory effect on PPO, followed by cinnamic acid and methyl cinnamate. Acidic pH enhanced the inhibitory effects of cinnamic acid and its derivatives on PPO, and the enhancement degree, IC50 and Ki declining degree were followed as 4-carboxycinnamic acid > cinnamic acid > methyl cinnamate. Methyl cinnamate exhibited competitive inhibition on PPO, while cinnamic acid and 4-carboxycinnamic acid exhibited mixed-type inhibition. Inhibitors induced slight changes in the secondary and tertiary structures of PPO, which were enhanced by acidic pH. Molecular docking results showed that 4-carboxycinnamic acid exhibited the strongest binding ability, and the main interaction forces were around carboxyl groups, and acidic pH enhanced the binding effect through more interactions and lower binding energy. This study could provide new insights into industrial application of cinnamic acid and its derivatives for the control of enzymatic browning of fruits and vegetables.


Asunto(s)
Catecol Oxidasa , Cinamatos , Catecol Oxidasa/química , Simulación del Acoplamiento Molecular , Concentración de Iones de Hidrógeno
4.
J Hazard Mater ; 465: 133261, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38150758

RESUMEN

The electro-Fenton (EF) process generates H2O2 through the 2e- oxygen reduction reaction (ORR), which is subsequently activated to •OH by iron-based catalysts. To alleviate the potential risk of external Fe-based catalysts, along with metal dissolution in acidic or neutral environments, in this study we employed oxygen-doped carbon nanotubes (OCNT) as a bifunctional, metal-free cathode to establish a metal-free EF process for organic pollutant degradation. The results demonstrate that the metal-free electrode has excellent H2O2 accumulation (12 mg L-1 cm-1) and degrades sulfathiazole (STZ) with 97.05 % efficiency in 180 min with an explanation kinetic of 0.0189 min-1. For the first time, this enhancement came from the dual active site centers in OCNT: Ⅰ) -COOH and defects active sites were responsible for H2O2 production, Ⅱ) then -CO triggered H2O2 into •OH, avoiding the introduction of metal-based catalysts. These findings suggest that the EF system with in situ oxygen-doped cathodes have great potential for treating antibiotic wastewater.

5.
Biomater Adv ; 156: 213722, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101076

RESUMEN

Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. ß-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.


Asunto(s)
Liposomas , Poloxámero , Ratones , Animales , Poloxámero/química , Hidrogeles , Mucinas , Distribución Tisular , Polímeros , Pulmón
6.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887921

RESUMEN

The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing to the limitations of wet-chemistry approaches, which frequently result in the generation of hazardous chemical by-products. In this paper, a "green" stirring plasma strategy is presented for the functionalization of octa-methyl POSS sub-micron particles into designable oxygen-containing functional groups using a low-pressure oxygen plasma from combined continuous wave and pulsed (CW+P) modes. Plasma from oxygen gas with CW mode offers highly oxygen-reactive species to continuously etch and activate the surface of the POSS. The resulting pulsed plasma assists in grafting more reactive oxygen species onto the active methyl groups of the POSS to form specific oxygen-containing functional groups including hydroxyl and carboxyl. A precise control of nearly one hydroxyl or one carboxyl group at the corner of the cage structure of the POSS is demonstrated, without damaging the core. Therefore, the plasma process discussed in this work is suggested by the authors as controllable fundamental research for the surface functionalization of sub-micron particles, promoting a more environmentally friendly pathway for the preparation of designable fillers.

7.
Chemistry ; 29(29): e202204071, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36879435

RESUMEN

Ceria nanoparticles (CNPs) are important typical nanozymes with multiple enzyme mimetic activities, which could facilitate the oxidation of organic dyes in acidic conditions, because of the oxidase mimetic activity. Usually, the regulation of oxidase mimetic activity is focused on the adjustment of the structure, morphology, composition, surface, and other factors of nanozymes. However, the influence of the surrounding environment is not considered, which is very important during the reaction process. In this work, the oxidase mimetic activity of CNPs in buffer solutions including citric acid, acetic acid and glycine buffer solutions was investigated, with the results that carboxyl group in buffer solution could adsorb the CNPs on the surface to promote the oxidase mimetic activity. Due to the chelation with the cerium ion, the enhancement is more significant by molecules with polycarboxylic groups, and the enhancement is more efficient by carboxyl molecules in buffer solution, compared with the modification of the carboxyl groups on the surface, because of easier operation and smaller steric hindrance. From the viewpoint of increasing the oxidase mimetic activity of CNPs, the work is expected to provide references for the selection of the reaction systems to optimize the oxidase mimetic activity in bio-detection applications.


Asunto(s)
Cerio , Nanopartículas , Oxidorreductasas/metabolismo , Nanopartículas/química , Oxidación-Reducción , Cerio/química , Quelantes
8.
Sci Total Environ ; 858(Pt 1): 159870, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328257

RESUMEN

Mercury decontamination from water requires highly effective and efficient methods for maintaining public health and environmental protection. Herein, based on the coordination theory between functional groups and metal ions, we proposed phenylic carboxyl group-based poly(pyrrole methane)s (PPDCBAs) as highly efficient mercury removal materials for environmental remediation applications. It was found that PPDCBAs can efficiently adsorb and remove mercury(II) from aqueous solutions by functionalizing the molecular structure with phenylic carboxyl groups. Among the as-prepared PPDCBAs, poly[pyrrole-2, 5-diyl (4-carboxybenzylidane)] (PPD4CBA) with the carboxyl group at the para position can not only adsorb mercury over 1400 mg⋅g-1 but also achieve a 92.5 % mercury(II) uptake within 100 min by a very low dosage of 0.1 g⋅L-1. In addition, PPDCBAs exhibited excellent adsorption selectivity for mercury(II) compared with copper(II), cadmium(II), zinc(II) and lead(II). Furthermore, as determined by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and the density functional theory (DFT) calculation, the mercury removal was found to be mainly dependent on the high density of chelating sites, the phenylic carboxyl moieties, which helped us to realize an ultra-trace amount mercury removal (from 10.8 µg⋅L-1 to 0.6-0.8 µg⋅L-1) for meeting drinking water standard requirements (1.0 µg⋅L-1).


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Adsorción , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Pirroles , Metano , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Quelantes , Agua , Cinética
9.
Talanta ; 255: 124224, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584618

RESUMEN

The study aimed to use a material with amino and carboxylic moieties to extract unmodified and phosphorothioate oligonucleotides. The charge of amine and carboxyl groups at the surface has changed with the change in pH of the adsorption (pH 4.5) and desorption solution (pH 9.5). Thus, both the binding and elution of the oligonucleotides were based on electrostatic interactions, and the procedure required only 10 mM ammonium acetate, with the change of pH depending on the extraction step. The developed procedure was successfully applied to extract oligonucleotides from aqueous solutions and serum samples. The method is simple and fast, providing good reproducibility (SD between 1 and 4%) and relatively high oligonucleotide recovery (81-98% for standards, 60-71% for diluted serum samples, and 80-92 for LLE serum extracts). Moreover, only environmentally friendly solvents were used.


Asunto(s)
Oligonucleótidos Fosforotioatos , Extracción en Fase Sólida , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Solventes , Agua , Adsorción , Cromatografía Líquida de Alta Presión/métodos
10.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144900

RESUMEN

The development of new applications of graphene oxide in the biomedical field requires the covalent bonding of bioactive molecules to a sheet skeleton. Obtaining a large carboxyl group population over the surface is one of the main targets, as carboxyl group concentration in conventional graphene oxide is low among a majority of non-useful sp3-C-based functionalities. In the present work, we propose a selective method that yields an impressive increase in carboxyl group population using single-layer, thermally reduced graphene oxide as a precursor in a conventional Hummers-Offemann reaction. When starting with a reduced graphene oxide with no interlayer registry, sulfuric acid cannot form a graphite intercalated compound. Then, potassium permanganate attacks in in-plane (vacancies or holes) structural defects, which are numerous over a thermally reduced graphene oxide, as well as in edges, yielding majorly carboxyl groups without sheet cutting and unzipping, as no carbon dot formation was observed. A single-layer precursor with no ordered stacking prevents the formation of an intercalated compound, and it is this mechanism of the potassium permanganate that results in carboxyl group formation and the hydrophilic character of the compound.

11.
Polymers (Basel) ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35160349

RESUMEN

In this study, mesoporous polyimide aerogels with carboxyl were successfully synthesized by the co-polymerization method at room temperature from pyromellitic dianhydride and 1,3,5-triaminophenoxybenzene, 3,5-diaminobenzoic acid, and 2,2'-dimethyl-4,4'-diaminobiphenyl. Compared to previously reported porous organic polymer materials, this aerogel has the advantage of a simple and efficient synthesis method. The thermal decomposition temperatures of the obtained polyimide aerogels are all above 400 °C and have excellent thermal stability. Among them, the largest specific surface area is 62.03 m2/g. Although the surface area of this aerogel is not large enough, it has considerable CO2 adsorption properties. The adsorption capacity of CO2 is up to 11.9 cm3/g, which is comparable to those of previously reported porous materials. The high CO2 adsorption is attributed to the abundance of carboxyl groups in the polyimide networks. The mild and convenient synthesis method and high CO2 adsorption capacity indicate that the polyimide aerogel with carboxyl is suitable as a good candidate material for CO2 adsorption.

12.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948032

RESUMEN

One of the concerns today's societies face is the development of resistant pathogenic microorganisms. The need to tackle this problem has driven the development of innovative antimicrobial materials capable of killing or inhibiting the growth of microorganisms. The present study investigates the dependence of the antimicrobial activity and solubility properties on the hydrophilicity/hydrophobicity ratio of antimicrobial coatings based on quaternary ammonium compounds. In this line, suitable hydrophilic and hydrophobic structural units were selected for synthesizing the antimicrobial copolymers poly(4-vinylbenzyl dimethyldodecylammonium chloride-co-acrylic acid), P(VBCDDA-co-AA20) and poly(dodecyltrimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate), P(SSAmC12-co-GMA20), bearing an alkyl chain of 12 carbons either through covalent bonding or through electrostatic interaction. The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends, obtained through solution casting after curing at various temperatures. The release of the final products in pure water and NaCl 1 M solutions (as analyzed by gravimetry and total organic carbon, TOC/total nitrogen, TN analyses), could be controlled by the coating composition. The cross-linked polymeric membranes of composition 60/40 w/w % ratios led to 97.8 and 99.7% mortality for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, whereas the coating 20/80 w/w % resulted in 96.6 and 99.8% cell reduction. Despite the decrease in hydrophobicity (from a 16- to a 12-carbon alkyl chain), the new materials maintained the killing efficacy, while at the same time resulting in increased release to the aqueous solution.


Asunto(s)
Antiinfecciosos/síntesis química , Escherichia coli/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/síntesis química , Staphylococcus aureus/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Compuestos Epoxi/química , Escherichia coli/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
13.
ACS Appl Mater Interfaces ; 13(14): 16300-16308, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33788533

RESUMEN

U(VI) and Eu(III), as representative elements of the hexavalent actinide and trivalent lanthanides (always as a chemical analogue for trivalent actinide), respectively, have attracted more and more attentions due to the widespread use of nuclear energy. Much effort has been focused on developing versatile materials for their uptake from aqueous solution. For the first time, we report here UiO-66 and its mono- (UiO-66-COOH) and di-carboxyl (UiO-66-2COOH) functional derivatives as robust adsorbents for efficient U(VI) and Eu(III) removal. It is found that the introduction of carboxyl groups greatly reduces the surface charge of UiO-66, thus guaranteeing excellent adsorption capacity at low pH. At pH = 3, for example, the adsorption capacity of UiO-66-2COOH for U(VI) and Eu(III) is more than 100 and 60 mg/g, respectively, while almost no adsorption occurs for pristine UiO-66. At pH = 4, both UiO-66-COOH and UiO-66-2COOH show high performance on U(VI) and Eu(III) removal. UiO-66-COOH has adsorption capacities of 80 and 43 mg/g for U(VI) and Eu(III), respectively, while the values for UiO-66-2COOH reach 150 and 80 mg/g, respectively. Also, all these materials achieve adsorption equilibrium within 100 min. More importantly, combining the needs of practical applications and the characteristics of high stability, high porosity, and excellent adsorption performance of UiO-66-2COOH, dynamic adsorption column experiments were successfully conducted; ∼99% U(VI)/Eu(III) can be efficiently adsorbed, and >90% adsorbed U(VI)/Eu(III) can be re-collected with dilute nitric acid solution, even after four adsorption-desorption cycles. The findings of this work demonstrate the application potential of metal-organic framework materials to remove radionuclides from environmental samples or nuclear waste liquids.

14.
Ecotoxicol Environ Saf ; 201: 110800, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540617

RESUMEN

Surface fires occur naturally or anthropogenically and can raise the temperature at the soil surface up to 600 °C. The heat derived from the surface fire can be subsequently transferred into CO2-enriched subsoils. As a result, the chemical compositions of soil organic matter (SOM) may be altered in fire-impacted anaerobic environments, indirectly influencing the redox transformations of pollutants, such as Cr(VI). In this study, a peat soil was heated up to 600 °C with limited air flow to simulate the effects of heat on the SOM during surface fire events. Then, Cr(VI) removal, including reduction and sorption, by the heat-treated peat soils was determined in relation to changes in the soil organic components. The results showed that the amount of O-containing functional groups, -CH2/-CH3 units of aliphatic groups, and dissolved organic carbon (DOC) in the SOM gradually decreased with an increase in the heating temperature. The removal of 0.1932 mM Cr(VI) did not exhibit a consistent decline along with the changes in these soil components. The heating temperatures of 200 and 250 °C were the thresholds that led to the decomposition of temperature-sensitive soil organic components such as lignin and other labile SOM. Such newly released organic fragments synergized lignin-like substances and carboxyl groups, resulting in up to 99% removal of the initially added Cr(VI). As the heating temperatures were increased from 300 to 600 °C, Cr(VI) reduction decreased from 66% to 20%. The black carbon-like materials and/or aromatic-containing moieties were the major components responsible for Cr(VI) reduction in 600°C-treated peat soils.


Asunto(s)
Cromo/análisis , Calor , Sustancias Húmicas/análisis , Lignina/química , Contaminantes del Suelo/análisis , Suelo/química , Oxidación-Reducción
15.
Environ Sci Pollut Res Int ; 27(20): 25754-25765, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32350842

RESUMEN

Humic acid (HA) and water play an important role in polycyclic aromatic hydrocarbons (PAHs) adsorption and biodegradation in soil. In this work, molecular dynamics (MD) and electrostatic potential surfaces (EPSs) simulations are conducted to research the contribution of quartz surface, leonardite humic acid (LHA), and water to PAH adsorption. The adsorption energies between PAHs and LHA are much higher than that between PAHs and quartz. Simulation shows that the hydroxyl and carboxyl groups' attraction by LHA is the main adsorption force between PAHs and LHA. The π-π interaction between PAHs and LHA also contributes to the adsorption process. In addition, the mobility of water on quartz surface is much higher than that of LHA. Water should be regarded as an adsorbate in the system as well as PAHs. However, the presence of water has a remarkable negative effect on the adsorption of PAHs on LHA and quartz. The bridging effect of water could only enhance the stability of the aggregation system. The adsorption contribution of quartz and LHA to PAHs in the soil model tends to 0 if the water layer reaches 2.0 nm. Graphical abstract.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Adsorción , Sustancias Húmicas , Simulación de Dinámica Molecular , Agua
16.
Environ Sci Pollut Res Int ; 27(9): 9547-9567, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31919825

RESUMEN

In this research, carboxyl-terminated hyperbranched poly(amidoamine) dendrimers grafted superparamagnetic nanoparticles (CT-HPMNPs) with core-shell structure were synthesized by the chemical co-precipitation method, the core of superparamagnetic iron oxide nanoparticles and a shell of polyamidoamines (PAMAM) and carboxyl groups, as a novel adsorbent for removing Hg2+ from aqueous systems. The surface of the particles was modified by 3-(aminopropyl) triethoxysilane, and finally, PAMAM and carboxyl dendrimers were grown on the surface up to 5.5 generation. The synthesized polymer was characterized physically and morphologically using different techniques. Also, they were evaluated in terms of adsorption capacity to remove inorganic pollutants of Hg2+, selectivity, and reusability. The adsorption mechanism Hg2+ onto CT-HPMNPs was investigated by single-step and two-step isotherms that the adsorption capacity of Hg2+ obtained 72.3 and 32.88 mg g-1 respectively at pH 5, adsorbent dosage 2 g L-1, Hg2+ initial concentrations 20 mg L-1, contact time 60 min, and temperature of 298 K by CT-HPMNPs. Also, the kinetics of Hg2+ followed the pseudo-second-order model and adsorption isotherms of Hg2+ onto CT-HPMNPs were fitted well by Freundlich (as a single-step) and two-step adsorption models with a correlation coefficient of 0.9997 and 0.9999 respectively. The results showed a significant potential of Hg2+ ions removing from industrial wastewater and spiked water by CT-HPMNPs.


Asunto(s)
Dendrímeros , Nanopartículas de Magnetita , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Poliaminas
17.
Carbohydr Polym ; 231: 115701, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888799

RESUMEN

A facile and rapid approach was designed to extract carboxylated cellulose nanocrystals (CCNCs) through a one-step hydrolysis process by using mixed acid system of sulfuric acid and nitric acid (H2SO4/HNO3). It is found that the surface hydroxyl groups on CNCs could be converted into carboxyl groups efficiently after 0.5 h treatment by introducing HNO3 as oxidant. The degree of oxidation could reach a maximum value of 0.11 at the reaction temperature of 80 °C, which was consistent with those prepared by the conventional TEMPO or APS oxidation method. Meanwhile, the as-prepared CCNCs presented a rod-like morphology with the length and diameter of 186 ±â€¯13 and 9 ±â€¯3 nm, respectively. More importantly, the CCNCs showed excellent dispersibility in water and some organic solvents due to the existence of negative carboxyl groups, which was benefit for their reinforcing applications and developing new applications by further surface functionalization.

18.
J Hazard Mater ; 385: 121524, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31699479

RESUMEN

Tall fescue (Festuca arundinacea Schreb) shows remarkable tolerance to lead (Pb), but the mechanisms involved in metal tolerance are not yet well understood. Here, tall fescue were firstly cultivated hydroponically with Pb2+ (0, 50, 200 and 1000 mg/L) for 14 days. The results showed that remodeling of root architecture plays important roles in tolerance of tall fescue to Pb2+ stress. Increased cell wall (CW) components contribute to restrict high amount of Pb2+ in roots. Additionally, the uronic acid contents of pectin, hemicellulose 1 (HC1) and hemicellulose 2 (HC2) increased under Pb2+ stress. We further observed that tall fescue cultivated with H2O2 showed similar remodeling of root architecture as Pb2+ treatment. Furthermore, pectin, HC1 and HC2 fractions were sequentially extracted from 0 and 10 mM H2O2 treated roots, and Pb2+ adsorption capacity and contents of carboxyl groups of pectin and HC2 fractions were steadily increased under H2O2 treatment in vitro. Our results suggest that degrees of esterification of pectin and HC2 are regulated by H2O2. High amount of low-esterified pectin and HC2 offer more carboxyl groups, provide more Pb2+ binding sites, and restrict more Pb2+ in the CW, which may enhance tolerance of tall fescue to Pb2+ stress.


Asunto(s)
Pared Celular/metabolismo , Festuca/metabolismo , Plomo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Pared Celular/efectos de los fármacos , Esterificación , Festuca/efectos de los fármacos , Plomo/metabolismo , Raíces de Plantas/efectos de los fármacos , Polisacáridos/química , Polisacáridos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/metabolismo
19.
Polymers (Basel) ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635082

RESUMEN

The present study developed novel functionalized corncobs introducing brushes with dense and active carboxyl groups (-COOH), named MC-g-PAA, for the highly efficient adsorption of Pb2+ from aqueous solutions. MC-g-PAA were synthesized via atom transfer radical polymerization (ATRP) and characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The amount of Pb2+ adsorbed on MC-g-PAA by hydrolysis with t-BuOK was 2.28 times greater than that with NaOH, attributed to the larger steric effect of t-BuOK, which reduced the hydrolysis of the bromo-ester groups. The influence of different parameters including the solid/liquid ratio, working solution pH, sorption temperature, and initial concentration and sorption time on the adsorption of Pb2+ were investigated in detail in batch experiments. Thermodynamic studies have shown that the adsorption process was spontaneous, endothermic, and accompanied by an increase in randomness. A better fit for the isotherm data was obtained using the Langmuir model than for the other four models and the maximum amount ( q max ) of Pb2+ adsorbed on MC-g-PAA was 342.47 mg/g, which is 21.11 times greater when compared with that of pristine corncobs (16.22 mg/g). The adsorption of Pb2+ on MC-g-PAA was very fast and followed the pseudo-second-order kinetic equation with a correlation coefficient of 0.99999. This monolayer adsorption process was dominated by chemical adsorption, and may proceed according to complexation and electrostatic interactions between Pb2+ and the carboxylate groups. This study indicated that MC-g-PAA could be successfully used as an adsorbent for the removal of Pb2+ from aqueous solutions due to its excellent efficiency.

20.
Nanomaterials (Basel) ; 9(7)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262029

RESUMEN

CdSe-reduced graphene oxide (CdSe/RGO) composites were synthesized by a hydrothermal method. CdSe/RGO composites with different mass ratios were prepared. The structure and morphology of CdSe/RGO composites were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesis of CdSe/RGO complexes was successfully demonstrated by Fourier infrared (FT-IR) and Raman spectra. CdSe nanoparticles in the CdSe/RGO composite were uniformly dispersed on the graphene surface. The study found that oxygen-containing functional groups such as hydroxyl (-OH) and carboxyl (-COOH) groups in graphene played a decisive role in the dispersion of CdSe. The third-order nonlinear optical properties of CdSe/RGO composites were measured by a single beam Z-scan technique. The experimental results showed that composites exhibited two-photon absorption and self-focusing nonlinear refraction properties. Additionally, the third-order nonlinear susceptibility of the composite material was obviously enhanced, which was mainly due to the good dispersion of CdSe nanoparticles on graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA