Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 657: 193-207, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38039880

RESUMEN

Recently, microwave absorption (MA) materials have attracted intensive research attention for their ability to counteract the effects of ever-growing electromagnetic pollution. However, conventional microwave absorbers suffer from complex fabrication processes, poor stability and different optimal thicknesses for minimum reflection loss (RLmin) and widest effective absorption bandwidth (EAB). To address these issues, we have used electrospinning followed by high-temperature annealing in argon to develop a flexible microwave absorber with strong wideband absorption. The MA properties of the carbon nanofibers (CNFs) can be tuned by adjusting annealing temperature, and are dependent on the composition and microstructure of the CNFs. The absorber membrane obtained at 800 °C consists of Fe0.64Ni0.36@graphite core-shell nanoparticles (NPs) embedded in CNFs, formed via a corrosion-like transformation from NiFe2O4 to Fe0.64Ni0.36 followed by surface graphitization. This nanostructure greatly enhances magnetic-dielectric synergistic loss to achieve superior MA properties, with an RLmin of -57.7 dB and an EAB of 6.48 GHz (11.20-17.68 GHz) both acquired at a thickness of 2.1 mm. This work provides useful insights into structure-property relationship of the CNFs, sheds light on the formation mechanism of Fe0.64Ni0.36@graphite NPs, and offers a simple synthesis route to fabricate light-weight and flexible microwave absorbers.

2.
Materials (Basel) ; 11(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572682

RESUMEN

The utilization of used crosslinked functional polymers (CFP) applied as sorbents or ion-exchangers is a great challenge arising from the need to protect the environment. In this paper we report a very promising way of obtaining carbon/magnetic composites based on metal (Co2+; Ni2+; Fe3+) derivatives of butadiene rubber-based phosphorus-containing polymer, which were treated as the model used CFP. We proposed a facile one-step thermal degradation approach to transform used CFP into carbon/magnetic composites (CMC). The obtained CMCs contained a mixture of metal phosphates and metal phosphides that exhibited strong magnetic properties due to the presence of nanosized metal derivatives with diameters of 100⁻140 nm. Structural and morphological changes of CFP and CMC after thermal degradation were investigated by the FTIR technique, X-ray Diffraction analysis, Scanning Electron Microscope, and Atomic Force Microscope⁻Magnetic Force Microscope. Moreover, thermal degradation kinetics parameters were determined to optimize the efficiency of the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA