Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.783
Filtrar
1.
ChemSusChem ; : e202400955, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255046

RESUMEN

As a globally abundant source of biomass, lignocellulosic biomass has been the centre of  attention as a potential resource for green energy generation and  value-added chemical production. A key component of lignocellulosic biomass, lignin, which is comprised of aromatic monomers, is a potential feedstock for value added chemical production. The cleavage processes of the linkages between monomers to obtain high value products, however, requires significant investigation as it is a complex, non-facile process. This study focuses on the photocatalytic valorization of a ß-5 lignin model compound, a key linkage in the lignin structure. It was found that a greater yield of aromatic products were obtained from the photocatalytic conversion of ß-5 lignin model compound using carbon nitride (CN) when compared to Evonik P25 titanium dioxide (TiO2). Products of the ß-5 model compound photoconversion were determined and C-C bond cleavage was observed. It was also determined that the solvent participated in the reactions with the introduction of a cyano group to one of the products. Radical quenching experiments revealed that superoxide radicals participated in the CN photocatalytic conversion. These results reveal for the first time the products and possible mechanism of the photocatalytic transformation of ß-5 model compounds using  CN photocatalysis.

2.
Small ; : e2403573, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258373

RESUMEN

Photocatalytic reforming (PR) of polyester waste, fueled by renewable sources like solar energy, offers a sustainable method for producing clean H2 and valuable by-products under mild conditions. The design of high-performance photocatalyst plays a pivotal role in determining the efficacy of an alkaline polyester PR system, influencing H2 generation activity and selectivity. Here, ultrathin porous carbon nitride nanosheets (UP-CN) loaded with Pt nanoclusters (Pt NCs, average diameter of 1.7 nm) with uniform Pt NCs distribution are introduced. The resulting Pt NCs/UP-CN catalyst can accelerate charge and mass transfer while providing additional active sites, achieving superior H2 generation rates of 11.69 mmol gcat -1 h-1 and 2923 mmol gPt -1 h-1 under AM 1.5 light, which nine times higher than that of Pt nanoparticles-bulk graphitic carbon nitride composite (1.29 mmol gcat -1 h-1 and 258 mmol gPt -1 h-1) as counterpart. This performance also surpasses that of previously reported carbon nitride-based and TiO2-based photocatalysts. Moreover, the density functional theory calculations reveal a significant reduction in the energy barrier for the water dissociation step (H2O + * → *H + OH) at the interface between UP-CN and anchored Pt NCs, showcasing the synergistic effect between Pt NCs and UP-CN. This catalytic system also exhibits universality across various polyester plastics.

3.
Anal Biochem ; 696: 115660, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260671

RESUMEN

Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au-CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5-15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and l-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 µM and 0.96 µAµM⁻1cm⁻2, respectively, for iodide ion, while 0.48 µM and 5.8 µAµM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au-CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.

4.
Adv Colloid Interface Sci ; 333: 103284, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39226798

RESUMEN

Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.

5.
ChemSusChem ; : e202401570, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305153

RESUMEN

Graphitic carbon nitride (CN) has garnered considerable attention in the field of visible-light CO2 photoreduction, but its efficiency remains limited by the intrinsic π-conjugated skeleton. Here, O and S were co-doped CN (O, S/CN) by a facile "hydrolysis + calcination" approach to modulate the physicochemical and electronic structure.  Distinctive from S doped CN (SCN), O, S/CN owned porous layer structure with several nanosheets and less SO42- groups on the surface. The amount of heteroatom-doping was achieved by changing the hydrothermal temperature. The optimum O, S/CN-80 achieved moderate CO production rate of 1.29 µmol g-1h-1, which was 3.79 times as much as SCN (0.34 µmol g-1h-1). The O and most S atoms were substitutionally doped and the effect of S doped state on the improved efficiency of CO generation in O, S/CN was also explored based on the theoretical calculations. This work provides an inspiration to develop efficient dual-doped CN photocatalysts for photocatalytic CO2 reduction.

6.
Front Plant Sci ; 15: 1454619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39297012

RESUMEN

Olive trees are known as one of the most iconic crops in the world. Considering the increasing water deficit worldwide, implementing some profitable and empirical strategies can be inevitable upon exposure to drought stress. Therefore, the present study aimed at clarifying the beneficial role of exogenously foliar application of Fe2O3 modified carbon nitride nanostructures (control, FeSO4, C3N4 and Fe2O3/g-C3N4) to "Shengeh" olive cultivars grown at different watering levels (100, 75, and 50% ET) in two experimental years (2022 and 2023) and the pomological attributes, physiological and biochemical changes happening in the treated leaves and fruits were discussed. The results indicated that drought stress caused a significant decline in pomological attributes in this experiment, and treatments could remarkably make up for this damage. Overall, Fe2O3/g-C3N4 outperformed as compared FeSO4 and C3N4 alone, which were also efficacious in conferring tolerance to the water deficit stress. Conversely, severe drought stressed-olive fruits showed higher oil content percent in the fresh matter and water use efficiency (WUE) in oil by 30% and 52.5%, respectively, as an average of results of two years, and after Fe2O3/g-C3N4, these features in olive plants subjected to severe drought improved by an average of 35% over two years. Ca2+ and K+ in olive plants under severe drought stress declined by 50% and 83% in 2022 and 46% and 24% in 2023, while Na+ increased in the plants exposed to 50%ET stress by 48% and 57% in two successive experimental years respectively. The application of Fe2O3/g-C3N4 remarkably improved the contents of Ca2+ and K+ by 101.5% and 369%, respectively, as an average of two years. Conversely, this beneficial treatment led to a significant decline in Na+ levels by 30% in 2022 and 2% in 2023 under stressful conditions. Moreover, it decreased the 'osmolytes' content, caused a smaller decline in chlorophyll levels, and resulted in higher relative water content occurring in the treated olive leaves. The reduction of oxidative markers was a result of the increased enzymatic activity after the use of Fe2O3/g-C3N4. Therefore, this treatment is a promising strategy to achieve improved resistance in olive plants in the future.

7.
Mikrochim Acta ; 191(10): 581, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243346

RESUMEN

To meet the needs of developing efficient extractive materials alongside the evolution of miniaturized sorbent-based sample preparation techniques, a mesoporous structure of g-C3N4 doped with sulfur as a heteroatom was achieved utilizing a bubble template approach while avoiding the severe conditions of other methods. In an effort to increase the number of adsorption sites, the resultant exfoliated structure was then modified with thymol-coumarin NADES as a natural sorbent modifier, followed by introduction into a nylon 6 polymer via an electrospinning process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis validated S-doped g-C3N4 and composite production. The prepared electrospun fiber nanocomposite, entailing satisfactory processability, was then successfully utilized as a sorbent in on-chip thin film micro-solid-phase extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from saliva samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Utilizing a chip device, a thin film µ-SPE coupled with LC-MS/MS analysis yielded promising outcomes with reduced sample solution and organic solvents while extending lifetime of a thin film sorbent. The DES-modified S-doped g-C3N4 amount in electrospun was optimized, along with adsorption and desorption variables. Under optimal conditions, selected NSAIDs were found to have a linear range of 0.05-100.0 ng mL-1 with an R2 ≥ 0.997. The detection limits were ranged between 0.02 and 0.2 ng mL-1. The intra-day and inter-day precisions obtained were less than 6.0%. Relative recoveries were between 93.3 and 111.4%.


Asunto(s)
Antiinflamatorios no Esteroideos , Disolventes Eutécticos Profundos , Grafito , Límite de Detección , Nanofibras , Saliva , Espectrometría de Masas en Tándem , Saliva/química , Espectrometría de Masas en Tándem/métodos , Grafito/química , Nanofibras/química , Humanos , Adsorción , Antiinflamatorios no Esteroideos/análisis , Porosidad , Disolventes Eutécticos Profundos/química , Cromatografía Liquida/métodos , Compuestos de Nitrógeno/química , Microextracción en Fase Sólida/métodos , Extracción en Fase Sólida/métodos
8.
J Environ Manage ; 370: 122403, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244933

RESUMEN

This study focuses on developing a g-C3N4/Sb2S3 heterojunction photocatalyst with different g-C3N4 to Sb2S3 weight ratios (1:1, 1:3, and 3:1) for degrading tetracycline (TC) pollutants. The 1:3 ratio (13 GS) exhibited optimal photocatalytic performance, achieving 99% TC degradation under sunlight within 120 min, compared to 78.4% under visible light and 38% under UV light. The 13 GS catalyst demonstrated strong reusability, maintaining 80% degradation efficiency after six cycles. Scavenger experiments identified hydroxyl radicals as crucial for TC degradation, with DMSO reducing activity by 30%. The photocatalyst also showed high hydrogen production with an apparent quantum efficiency (AQE) of 19.8% under standard conditions, and improved AQE in acidic (23%) and basic (22.7%) conditions, and with CH3OH (23.2%). This g-C3N4/Sb2S3 heterojunction offers a promising solution for degrading toxic contaminants and has the potential for solar-powered applications.

9.
Carbohydr Polym ; 346: 122616, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245526

RESUMEN

Traditional Fenton principles for degrading polysaccharides, including chondroitin sulfate (CS), are fraught with limitations, such as strict pH-dependence, higher temperature requirements, desulfurization, and environmentally perilous. In this study, an effective Fenton-like system comprising trimetallic-doped carbon nitride material (tri-CN) with hydrogen-bonded melamine-cyanuric acid (MCA) supramolecular aggregates as its basic skeleton was engineered to overcome the challenges of traditional methods. Detailed material characterizations revealed that, compared to monometallic-doped or bimetallic-doped counterparts, tri-CN offered a larger surface area, higher porosity, and increased metal loading, thereby enhancing reactant accessibility and polysaccharide degradation efficiency. The characterization and activity assessment of the degraded polysaccharide revealed structurally intact products without significant desulfurization, indicating the effectiveness of the designed approach. Moreover, the degraded chondroitin sulfate CS3 catalyzed by tri-CN, exhibited promising antioxidant activity and anti-CRISPR potential. The results elucidated that the high-valent iron species in the material served as primary active sites, catalyzing the cleavage of hydrogen peroxide to generate hydroxyl radicals that subsequently attacked CS chains, leading to their fragmentation. Hence, the designed material can be efficiently applied to polysaccharide degradation, but not limited to photocatalysis, electrocatalysis, sensor, energy storage materials, and wastewater treatment.

10.
Environ Res ; 262(Pt 2): 119972, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260721

RESUMEN

Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO2 and H2O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.

11.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274991

RESUMEN

This study presents a comprehensive evaluation of catalytic ozonation as an effective strategy for indigo dye bleaching, particularly examining the performance of four carbon-based catalysts, activated carbon (AC), multi-walled carbon nanotubes (MWCNT), graphitic carbon nitride (g-C3N4), and thermally etched nanosheets (C3N4-TE). The study investigates the efficiency of catalytic ozonation in degrading Potassium indigotrisulfonate (ITS) dye within the constraints of short contact times, aiming to simulate real-world industrial wastewater treatment conditions. The results reveal that all catalysts demonstrated remarkable decolorization efficiency, with over 99% of indigo dye removed within just 120 s of mixing time. Besides, the study delves into the mechanisms underlying catalytic ozonation reactions, elucidating the intricate interactions between the catalysts, ozone, and indigo dye molecules with the processes being influenced by factors such as PZC, pKa, and pH. Furthermore, experiments were conducted to analyze the adsorption characteristics of indigo dye on the surfaces of the materials and its impact on the catalytic ozonation process. MWCNT demonstrated the highest adsorption efficiency, effectively removing 43.4% of the indigo dye color over 60 s. Although the efficiency achieved with C3N4-TE was 21.4%, which is approximately half of that achieved with MWCNT and less than half of that with AC, it is noteworthy given the significantly lower surface area of C3N4-TE.

12.
J Colloid Interface Sci ; 678(Pt C): 180-190, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39293362

RESUMEN

Constructing a photocatalytic in-situ Fenton system (PISFs) is a promising strategy to address the need for continuous hydrogen peroxide (H2O2) addition and the low efficiency of H2O2 activation for hydroxyl radical generation in the traditional Fenton reaction. In this study, we constructed a photocatalytic in-situ Fenton system using anthraquinone-modified carbon nitride (AQ-C3N4) for efficient pollutant degradation. The resultant AQ-C3N4 not only enhanced the production of H2O2 but also increased the generation of hydroxyl radical (·OH). Experimental results demonstrated that, the apparent rate constant for the degradation of 2,4-Dichlorophenol (2,4-DCP) by AQ-C3N4-PISFs was 0.145 min-1, which is 2.74 times higher than that of C3N4 under visible light. Density functional theory (DFT) calculations indicate that AQ modification promotes electron-hole separation while increasing the adsorption energy of O2. Independent gradient model (IGM) analysis based on Hirshfeld Partition revealed that van der Waals interactions between AQ-C3N4 and 2,4-DCP promoted the degradation process. This work provides new ideas to overcome the problems of continuous addition of H2O2 and low utilization of ·OH that exist in conventional Fenton system.

13.
Nanotechnology ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284319

RESUMEN

The present study outlines the preparation of a ternary nanocomposite film comprising of polyaniline doped with camphor sulfonic acid (PANI), reduced graphene oxide (rGO), and graphitic carbon nitride (g-C3N4), and delves into its thermoelectric performance. PANI is known to possess high electrical conductivity (σ) and poor thermal conductivity (κ). However, its potential for thermoelectric applications is constrained by the low value of the Seebeck coefficient (S). The incorporation of g-C3N4 in PANI has been demonstrated to result in an improvement of the Seebeck coefficient. Furthermore, the addition of rGO to the PANI/g-C3N4 sample counteracts the decrease in electrical conductivity. The PANI/g-C3N4/rGO ternary nanocomposite film exhibits an enhanced Seebeck coefficient of ~2.2 times when compared to the PANI sample. The Seebeck coefficient of the PANI/g-C3N4/rGO nanocomposite is enhanced by the energy filtering effect that occurs at the interfaces between g-C3N4/PANI and PANI/rGO. The π-π interaction between the PANI chains and rGO is responsible for the increased electrical conductivity resulting from the well-ordered polymer chain arrangement on the g-C3N4 and rGO surfaces. The ternary nanocomposite sample demonstrated a synergistic improvement in both electrical conductivity and Seebeck coefficient, resulting in a remarkable ~4.6-fold increment in power factor and an ~4.3-fold enhancement in the figure of merit (zT), as compared to the pristine PANI film. .

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125129, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288603

RESUMEN

Selective response is the key index to evaluate the performance of polymeric carbon nitride (PCN)-based heavy metal ion fluorescence sensors. Herein, to explore the role of cyano groups on selectivity, four kinds of PCN, including PCN-Cl, PCN-Ac, PCN-B and PCN-K were prepared by the molten salt method of sodium chloride and sodium acetate, the reduction method of sodium borohydride and the etching method of potassium hydroxide, respectively. These PCNs exhibited different surface cyano characteristics, but all of them had significant blue emission under ultraviolet excitation. It is proved that the assistant of sodium chloride or potassium hydroxide is an effective method to prepare PCNs with abundant surface cyano group. A series of fluorescence quenching experiments of metal ions showed that the cyano-rich degree of PCN is closely related to its selective response to mercury (II) ions. PCN-Cl and PCN-K emerged good selective quenching of mercury (II) ions, which may be related to the soft acid-soft base strong interaction between mercury (II) ions and cyano groups. Both PCN-Cl and PCN-K fluorescent probes for mercury (II) ions had a linear range of 5 âˆ¼ 50 µmol L-1, and PCN-Cl exhibited a lower detection limit of 0.38 µmol L-1. This work confirmed the selective fluorescence response of cyano-rich PCN to mercury (II) ions, proposed the mechanism of selective fluorescence quenching response of mercury (II) ions, and provided a new idea for the design of efficient and accurate PCN-based fluorescence probes.

15.
J Colloid Interface Sci ; 678(Pt B): 955-969, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270395

RESUMEN

Constructing photocatalysts for the stable and efficient production of NH3 is of excellent research significance and challenging. In this paper, the electron acceptor 5-amino-1,10-phenanthroline (AP) is introduced into the electron-donor graphitic carbon nitride (CN) framework by a simple heated copolymerization method to construct a donor-acceptor (D-A) structure. Subsequently, the phenanthroline unit is coordinated with transition metal Fe3+ ions to obtain the photocatalyst Fe(III)-0.5-AP-CN with better nitrogen fixation performance, and the average NH3 yield can reach 825.3 µmol g-1 h-1. Comprehensive experimental results and theoretical calculations show that the presence of the D-A structure can induce intramolecular charge transfer, effectively separating photogenerated electrons and holes. The Fe active sites can improve the chemisorption energy for N2, enhance the N-Fe bonding, and better activate the N2 molecule. Therefore, the synergistic effect between the construction of the D-A structure and the stably dispersed Fe active sites can enable CN to achieve high-performance N2 reduction to produce NH3.

16.
ACS Appl Bio Mater ; 7(9): 6306-6312, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39236263

RESUMEN

Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.


Asunto(s)
Materiales Biocompatibles , Grafito , Rayos Infrarrojos , Ensayo de Materiales , Compuestos de Nitrógeno , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Grafito/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Compuestos de Nitrógeno/química , Materiales Biocompatibles/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Fotoquimioterapia , Nitrilos/química
17.
Environ Sci Pollut Res Int ; 31(43): 55836-55849, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245673

RESUMEN

In this paper, a modification of g-C3N4 was carried out by combining non-metal doping with the construction of heterojunctions, and a type II heterojunction composite, S/g-C3N4@ß-Bi2O3, was prepared. The phase structure, morphology, elemental composition, valence band structure, and light absorption performance of the photocatalyst were analyzed using characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The performance of the composite photocatalyst in the photocatalytic degradation of gaseous toluene, one of the typical volatile organic compounds (VOCs), under simulated solar light was studied. The effects of preparation conditions, toluene concentration, and recycling on the photocatalytic performance of the composite photocatalyst were investigated. The results show that under the optimal preparation conditions, S/g-C3N4@ß-Bi2O3 achieved a degradation efficiency of 74.0% for 5 ppm toluene after 5 h of light irradiation. Although the degradation efficiency decreased to 61.2% after five cycles, it maintained 83% of its initial activity, indicating good stability of the composite photocatalyst. Free radical quenching experiments demonstrated that h+ was the main active species in the photocatalytic degradation of toluene, followed by ·O2-. Based on all experimental results, the migration law of photo-generated charges was analyzed, and a possible photocatalytic mechanism was proposed. In this study, a new material was obtained for the photocatalytic removal of VOCs by improving the photocatalytic properties of g-C3N4.


Asunto(s)
Tolueno , Tolueno/química , Catálisis , Compuestos Orgánicos Volátiles/química , Bismuto/química , Fotólisis
18.
Talanta ; 280: 126762, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217710

RESUMEN

The development of valid chemical enhancement strategy with charge transfer (CT) for semiconductors has great scientific significance in surface-enhanced Raman scattering (SERS) technology. Herein, a phosphorus doped crystalline/amorphous polymeric carbon nitride (PCPCN) is fabricated by a facile molten salt method, and is employed as a SERS substrate for the first time. Upon the synergies of phosphatization and molten salt etching, PCPCN owns a cascaded internal electric field (IEF) due to the formation of p-n homojunction (interface-IEF) and crystalline/amorphous homojunction (bulk-IEF). The interface-IEF and bulk-IEF could effectively suppress the recombination of charge carriers and promote electron transfer between PCPCN and target methylene blue (MB), respectively. The strong CT interaction endows PCPCN substrate with superior SERS activity with an enhancement factor (EF) of 5.53 × 105. Au nanoparticles (Au NPs) are subsequently decorated on PCPCN to introduce electromagnetic enhancement for a better SERS response. The Au/PCPCN substrate allows to reliably detect trace crystal violet, as well as the thiram residue on cherry tomato. This work offers an integrated solution to enhance CT efficiency based on collaborative homojunction and internal electric field, and may inspire the design of novel semiconductor-based SERS substrates.

19.
Small ; : e2405013, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109579

RESUMEN

2D carbon nitride nanosheets, exemplified by g-C3N4, offers significant structural benefits and enhanced photocatalytic activity. Nonetheless, the quantum confinement effect prevalent in nanoscale photocatalysts would result in an enlarged bandgap, potentially restricting the spectral absorption range and impeding improvements in photocatalytic efficiency. Here, a high-performance 2D photocatalyst with an extended spectral response is achieved by incorporating a novel phenol-like structure into the conjugated framework of ultrathin g-C3N4 nanosheet. This novel strategy features targeted pyrimidine doping to create a conjugated carbon zone in heptazine structure, offering a thermodynamically favorable pathway for hydroxyl functionalization during the annealing exfoliation process. Consequently, the π-π* transition energy in the material is significantly decreased, and the active lone pair electrons in phenol-like structure induces a new n-π* transition with notably enhanced absorption from 500 to 650 nm. The optimized material shows a dramatic enhancement in photocatalytic activity, achieving ≈72 times than the activity of bulk g-C3N4, and demonstrating a measurable H2 production rate of 6.57 µmol g-1 h-1 under 650 nm light. This study represents a significant step forward in the strategic design of 2D photocatalysts, with tailored electronic structures that significantly boost light absorption and photocatalytic efficiency.

20.
Luminescence ; 39(8): e4871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143684

RESUMEN

Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.


Asunto(s)
Cobre , Dopamina , Colorantes Fluorescentes , Grafito , Nanopartículas del Metal , Musa , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Dopamina/análisis , Grafito/química , Cobre/química , Cobre/análisis , Musa/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Espectrometría de Fluorescencia , Polímeros Impresos Molecularmente/química , Nitrilos/química , Límite de Detección , Compuestos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA