Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 978
Filtrar
1.
Heliyon ; 10(16): e34277, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224274

RESUMEN

Capsicum is generally infested with many biotic agents mainly sucking insects, among them the major is aphid (Myzus persicae). Chemical management is one of the most common strategies for their management. However, there are no recommended insecticides for insect management in polyhouse. An experiment was designed to assess the bio-potency of four popularly used insecticides (Imidacloprid-17.8SL, Acephate-75SP, Dimethoate-30EC and Buprofezin-25SC), a botanical (Neem oil 10000 ppm) and two entomopathogenic fungi (Metarhizium anisopliae 1.15%WP and Lecanicillium lecanii 1.15%WP) for two consecutive seasons. Most effective and the highest reduction of aphid population (78.14-81.92 %) were found in imidacloprid (17.8SL) treated plots. This effective molecule imidacloprid was further studied for its dissipation pattern under polyhouse and open condition and found that the imidacloprid residues in capsicum fruit dissipated below quantification limit (BQL) within 10days after final spray and the residues in the soil sampled at harvest time were found below the detection level. The half-lives of imidacloprid were 1.88 and 2.61 days under polyhouse and 1.07 and 1.52 days in open field at recommended doses (25 g a.i. ha-1) and double doses (50 g a.i. ha-1) of application respectively. The dietary exposure of imidacloprid on capsicum fruit under both conditions exposed that hazard quotient (HQ) values obtained from the different treatment doses have not exceeded the upper limit of toxicity (HQ < 1) and imidacloprid residues in the fruits were found below the existing MRL (Maximum Residue Limit) values (0.5 mg/kg) at 3 days after its final applications. Thus, imidacloprid may be considered as the effective chemical management option against aphids in capsicum under polyhouse and open field having no harmful effect on human consumption.

2.
Biomed Rep ; 21(5): 153, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39247424

RESUMEN

Capsaicin is a bioactive compound found prominently in Capsicum annuum L. plants and takes on a pivotal role in their characteristic spiciness. Previous studies have delved into the potential analgesic effect of capsaicin in various oral conditions, such as oral neuropathic pain, trigeminal neuralgia, oral mucositis, temporomandibular joint disorders and burning mouth syndrome. Capsaicin has also demonstrated promise in inhibiting the proliferation of different oral cancer cell lines. Its antimicrobial properties have also been shown to inhibit the growth of oral pathogens associated with dental caries, periodontitis and oral candidiasis. However, to harness its benefits effectively, more studies are required to establish optimal dosages for pain relief while minimizing adverse effects. In addition, investigation of the effect of capsaicin on nonpathogenic oral bacteria and viruses is warranted. Human-based research is crucial for elucidating the biomolecular mechanisms underlying the properties of capsaicin, potentially leading to the development of more effective interventions for oral health problems.

3.
Plant Physiol Biochem ; 216: 109113, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276673

RESUMEN

In many regions, nitrogen (N) deficiency limits pepper cultivation, presenting significant cultivation challenges. This study investigates the impact of N deficiency and silicon (Si) supplementation on physiological responses and antioxidant modulation in pepper plants, focusing particularly on the homeostasis of carbon (C), nitrogen, and phosphorus (P), and their effects on growth and biomass production. Conducted in a factorial design, the experiment examined pepper plants under conditions of N sufficiency and deficiency, with and without Si supplementation (0.0 mM and 2.0 mM). Results showed that N deficiency sensitizes pepper plants, leading to increased electrolyte leakage (39.59%) and disrupted C, N, and P homeostasis. This disruption manifests as reductions in photosynthetic pigments (-64.53%), photochemical efficiency (-14.92%), and the synthesis of key metabolites such as total free amino acids (-86.97%), sucrose (-53.88%), and soluble sugars (-39.96%), ultimately impairing plant growth. However, Si supplementation was found to alleviate these stresses. It modulated the antioxidant system, enhanced the synthesis of ascorbic acid (+30.23), phenolic compounds (+33.19%), and flavonoids (+7.52%), and reduced cellular electrolyte leakage (-25.02%). Moreover, Si helped establish a new homeostasis of C, N, and P, optimizing photosynthetic and nutritional efficiency by improving the utilization of C (+17.46%) and N (+13.20%). These Si-induced modifications in plant physiology led to increased synthesis of amino acids (+362.20%), soluble sugars (+51.34%), and sucrose (77.42%), thereby supporting enhanced growth of pepper plants. These findings elucidate the multifaceted biological roles of Si in mitigating N deficiency effects, offering valuable insights for more sustainable horticultural practices.

4.
Int J Biol Macromol ; : 135592, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276895

RESUMEN

Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.

5.
Data Brief ; 55: 110735, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100777

RESUMEN

Feeding the increasing global population and reducing the carbon footprint of agricultural activities are two critical challenges of our century. Growing crops under protected horticulture and precise crop monitoring have emerged to address these challenges. Crop monitoring in commercial protected facilities remains mostly manual and labour intensive. Using computer vision to solve specific problems in image-based crop monitoring in these compact and complex growth environments is currently hindered by the scarcity of available data. We collected an RGBD dataset for vertically supported, hydroponically-grown capsicum plants in a commercial-scale glasshouse facility to fill this gap. Data were collected weekly using a single top-angled stereo camera mounted on a mobile platform running between the hydroponic gutters. The RGBD streams covered 80 % of the crop growing season in three different light conditions. The metadata include camera configurations and light condition information. Manually measured plant heights of ten selected plants per gutter are provided as ground truth. The images covered the whole plants and focused on the top third. This dataset will support research on plant height estimation, plant organ identification, object segmentation, organ measurements, 3D reconstruction, 3D data processing, and depth noise reduction. The usability of the dataset has been successfully demonstrated in a previously published study on plant height estimation using machine learning and 3D point cloud.

6.
BMC Res Notes ; 17(1): 231, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169427

RESUMEN

OBJECTIVES: Capsicum baccatum and C. chinense are domesticated pepper species originating from Latin America recognized for their unique flavor and taste and widely diffused as spicy food for fresh uses or for processing. Owing to their capacity for adaptation to diverse habitats in tropical regions, these species serve as a valuable resource for agronomic traits and tolerance to both biotic and abiotic challenges in breeding projects. This study aims to dissect the genetic diversity of C. baccatum and C. chinense germplasm and to detect candidate genes underlying the variation of plant morphological and fruit size and shape traits. To that goal, SNP data from genotyping by sequencing have been used to investigate the genetic diversity and population structure of 103 accessions belonging to the two species. Further, plants have been assessed with main plant descriptors and fruit imaging analysis and association between markers and traits has been performed. RESULTS: The population structure based on 29,820 SNPs revealed 4 subclusters separating C. chinense and C. baccatum individuals. A deeper analysis within each species highlighted three subpopulations in C. chinense and two in C. baccatum. Phenotypic characterization of 54 traits provided approximately 125 thousand datapoints highlighting main differences between species for flower and fruit traits rather than plant architecture. Marker-traits association, performed with the CMLM model, revealed a total of 6 robust SNPs responsible for change in flower traits and fruit shape. This is the first attempt for mapping morphological traits and fruit features in the two domesticated species, paving the way for further genomic assisted breeding.


Asunto(s)
Capsicum , Frutas , Polimorfismo de Nucleótido Simple , Capsicum/genética , Capsicum/anatomía & histología , Frutas/genética , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta , Fenotipo , Marcadores Genéticos , Sitios de Carácter Cuantitativo/genética , Genotipo , Genómica/métodos , Variación Genética
7.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124188

RESUMEN

As a crucial member of the gene family involved in the biosynthesis of strigolactones, D27 plays an important regulatory role in plant branching and root development, which is essential for field management and yield increase in peppers (Capsicum annuum L.). To comprehensively understand the characteristics of the pepper D27 gene family, we identified three CaD27 genes. By analyzing their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues, the characteristics of the CaD27 gene family were revealed. The research results showed that these three CaD27 genes are located in three different chromosomes. Evolutionary analysis divided the members of CaD27 into three groups, and gene collinearity analysis did not find any duplicates, indicating the diversity and non-redundancy of the CaD27 gene family members. In addition, we identified and classified cis-elements in the promoter regions of CaD27 genes, with a relatively high proportion related to light and plant hormone responses. Expression pattern analysis showed that CaD27.1 is expressed in leaves, while CaD27.2 is expressed in roots, indicating tissue specificity. Furthermore, protein interaction predictions revealed an interaction between D27.2 and CCD7. This study provided important insights into the function and regulatory mechanisms of the CaD27 gene family and the role of strigolactones in plant growth and development.

8.
Genes (Basel) ; 15(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39202456

RESUMEN

Fruit weight is an important agronomic trait in pepper production and is closely related to yield. At present, many quantitative trait loci (QTL) related to fruit weight have been found in pepper; however, the genes affecting fruit weight remain unknown. We analyzed the fruit weight-related quantitative traits in an intraspecific Capsicum annuum cross between the cultivated species blocky-type pepper, cv. Qiemen, and the bird pepper accession, "129-1" (Capsicum annuum var. glatriusculum), which was the wild progenitor of C. annuum. Using the QTL-seq combined with the linkage-based QTL mapping approach, QTL detection was performed; and two major effects of QTL related to fruit weight, qFW2.1 and qFW3.1, were identified on chromosomes 2 and 3. The qFW2.1 maximum explained 12.28% of the phenotypic variance observed in two F2 generations, with the maximum LOD value of 11.02, respectively; meanwhile, the qFW3.1 maximum explained 15.50% of the observed phenotypic variance in the two F2 generations, with the maximum LOD value of 11.36, respectively. qFW2.1 was narrowed down to the 1.22 Mb region using homozygous recombinant screening from BC2S2 and BC2S3 populations, while qFW3.1 was narrowed down to the 4.61Mb region. According to the transcriptome results, a total of 47 and 86 differentially expressed genes (DEGs) in the candidate regions of qFW2.1 and qFW3.1 were identified. Further, 19 genes were selected for a qRT-PCR analysis based on sequence difference combined with the gene annotation. Finally, Capana02g002938 and Capana02g003021 are the most likely candidate genes for qFW2.1, and Capana03g000903 may be a candidate gene for qFW3.1. Taken together, our results identified and fine-mapped two major QTL for fruit weight in pepper that will facilitate marker-assistant breeding for the manipulation of yield in pepper.


Asunto(s)
Capsicum , Mapeo Cromosómico , Frutas , Sitios de Carácter Cuantitativo , Capsicum/genética , Capsicum/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Fenotipo , Cromosomas de las Plantas/genética , Proteínas de Plantas/genética , Ligamiento Genético , Genes de Plantas/genética
9.
BMC Plant Biol ; 24(1): 797, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179978

RESUMEN

The chloroplast (cp.) genome, also known as plastome, plays crucial roles in plant survival, adaptation, and evolution. The stable genetic structure of cp. genomes provides an ideal system for investigating species evolution. We sequenced three complete cp. genome sequences of Capsicum species and analyzed them using sequences of various Capsicum species retrieved from the NCBI database. The cp. genome of Capsicum species maintains a well-preserved quadripartite structure consisting of two inverted repeats (IRs) flanked by a large single copy (LSC) region and a small single copy (SSC) region. The sizes of cp. genome sequences ranged from 156,583 bp (C. lycianthoides) to 157,390 bp (C.pubescens). A total of 127-132 unique genes, including 83-87 protein-coding, 36-37 tRNA, and eight rRNA genes, were predicted. Comparison of cp. genomes of 10 Capsicum species revealed high sequence similarity in genome-wide organization and gene arrangements. Fragments of trnT-UGU/trnL-UAA, ccsA, ndhD, rps12, and ycf1 were identified as variable regions, and nucleotide variability of LSC and SSC was higher than that of IR. Phylogenetic speciation analysis showed that the major domesticated C. annuum species were the most extensively divergent species and closely related to C. tovarii and C. frutescens. Analysis of divergent times suggested that a substantial range of speciation events started occurring ~ 25.79 million years ago (Mya). Overall, comparative analysis of cp. genomes of Capsicum species not only offers new insights into their genetic variation and phylogenetic relationships, but also lays a foundation for evolutionary history, genetic diversity, conservation, and biological breeding of Capsicum species.


Asunto(s)
Capsicum , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Capsicum/genética
10.
Genes (Basel) ; 15(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39202378

RESUMEN

Capsicum annuum L. is extensively cultivated in subtropical and temperate regions globally, respectively, when grown in a medium with 8 holding significant economic importance. Despite the availability of genome sequences and editing tools, gene editing in peppers is limited by the lack of a stable regeneration and transformation method. This study assessed regeneration and transformation protocols in seven chili pepper varieties, including CM334, Zunla-1, Zhongjiao6 (ZJ6), 0818, 0819, 297, and 348, in order to enhance genetic improvement efforts. Several explants, media compositions, and hormonal combinations were systematically evaluated to optimize the in vitro regeneration process across different chili pepper varieties. The optimal concentrations for shoot formation, shoot elongation, and rooting in regeneration experiments were determined as 5 mg/L of 6-Benzylaminopurine (BAP) with 5 mg/L of silver nitrate (AgNO3), 0.5 mg/L of Gibberellic acid (GA3), and 1 mg/L of Indole-3-butyric acid (IBA), respectively. The highest regeneration rate of 41% was observed from CM334 cotyledon explants. Transformation optimization established 300 mg/L of cefotaxime for bacterial control, with a 72-h co-cultivation period at OD600 = 0.1. This study optimizes the protocols for chili pepper regeneration and transformation, thereby contributing to genetic improvement efforts.


Asunto(s)
Capsicum , Regeneración , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/efectos de los fármacos , Regeneración/genética , Regeneración/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Transformación Genética , Giberelinas/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Compuestos de Bencilo , Purinas/farmacología , Edición Génica/métodos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de los fármacos , Fitomejoramiento/métodos , Indoles
11.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062790

RESUMEN

In our research, we utilized six small-fruited pepper germplasms as materials, selected cotyledons with the petiole and hypocotyls as explants, and conducted in vitro regeneration studies. Our outcomes specify that the most suitable explant is cotyledon with the petiole, and the suitable genotype is HNUCA341. The optimal medium for inducing and elongating adventitious buds for this genotype is Murashige and Skoog medium (MS) + 9.12 µM Zeatin (ZT) + 0.57 µM 3-Indoleacetic acid (IAA), with a bud induction rate of 44.4%. The best rooting induction medium is MS + 1.14 µM IAA, with a rooting rate of 86.7%. Research on the addition of exogenous hormones has revealed that the induction speed of buds in small-fruited pepper (HNUCA341) in the combination of ZT and IAA hormones (abbreviated as ZI) is quicker, and the induction effect is better. The histological observations indicate that ZI treatment accelerates the initiation of explant division and differentiation, causing a shorter duration of vascular-bundle tissue production. The plant hormone signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including ARR9 (LOC107843874, LOC107843885), ARR4 (LOC107848380, LOC107862455), AHK4 (LOC107870540), AHP1 (LOC107839518), LAX2 (LOC107846008), SAUR36 (LOC107852624), IAA8 (LOC107841020), IAA16 (LOC107839415), PYL4 (LOC107843441), and PYL6 (LOC107871127); these significantly enriched genes may be associated with in vitro regeneration. In addition, the carbon metabolism pathway and plant mitogen-activated protein kinase (MAPK) signaling pathway are also significantly enriched in KEGG. The results of the Gene Ontology (GO) analysis revealed that differentially expressed genes related to carbon metabolism and fixation, photosynthesis and MAPK signaling pathways were upregulated under ZI treatment. It was found that they might be associated with enhanced regeneration in vitro. Furthermore, we also screened out differentially expressed transcription factors, primarily from the MYB, bHLH, AP2/ERF, and NAC families. Overall, our work accumulated important data for the in-depth analysis of the molecular mechanism of in vitro regeneration of pepper, and provides valuable germplasm for establishing an efficient stable pepper genetic-transformation system based on tissue culture.


Asunto(s)
Capsicum , Cotiledón , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Regeneración , Capsicum/genética , Capsicum/crecimiento & desarrollo , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regeneración/efectos de los fármacos , Regeneración/genética , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Perfilación de la Expresión Génica
12.
Plant Physiol Biochem ; 214: 108919, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991591

RESUMEN

Drought stress caused by the global climate considerably disturbs plant yield and growth. Here, we explored the putative roles of silicon in repressing drought mechanisms in pepper and the prominent involvement of secondary metabolites, GA pathway, and photosystem II. Our research revealed that the transcript level of the flavonoid biosynthesis-associated genes, including the PAL, 4-CL, CHS, FLS-1, F3H and DFR, progressively induced in the pepper leaves treated with silicon during the drought stress duration. Moreover, the phenolic and flavonoid compounds extensively induced in the pepper plants. Furthermore, the pepper plants markedly inhibited chlorophyll catabolic-allied genes, senescence-related marker gene, and the Rbohs gene. Silicon application also sustained the membrane stability, supported via fewer electrolyte leakage processes and minor, O2- H2O2 and MDA levels during drought. Apart from this, the pepper plants significantly induced the expression level of the photosystem II-related genes, osmoprotectants pathway-associated genes, and antioxidant defense genes. Moreover, the GA biosynthesis genes were prompted, while the ABA signaling and biosynthesis genes were suppressed in the silicon-supplemented plants. These consequences infer that the role of Si supplementation on enhancing drought tolerance could be elucidated through the activation of secondary metabolites, flavonoid biosynthesis, osmoprotectants, GA pathway, the efficiency of PSII, and the suppression of chlorophyll degradation. Our research outcomes unveil new and remarkable characteristics of silicon supplementation and offer a series of candidate targets for improving the tolerance of pepper plants to drought stress.


Asunto(s)
Capsicum , Clorofila , Resistencia a la Sequía , Silicio , Capsicum/metabolismo , Capsicum/genética , Capsicum/efectos de los fármacos , Capsicum/fisiología , Clorofila/metabolismo , Clorofila/biosíntesis , Resistencia a la Sequía/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Silicio/farmacología , Silicio/metabolismo
14.
Food Chem ; 460(Pt 2): 140547, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068792

RESUMEN

Chilling injury (CI) in green pepper fruits during low-temperature storage causes a significant decline in quality. The present study utilized physiological, transcriptomic, and metabolomic analyses to idneitfy the mechanisms by which trypsin mitigates CI in green peppers stored at 4 °C for 8 days, followed by 3 days of shelf life. Results indicated that the trypsin treatment significantly reduced electrolyte leakage and the CI index in peppers, effectively extending their shelf life and preserving postharvest quality. After 4 days of storage, comparative -omic analyses identified 2514 differentially expressed genes (DEGs) and 397 differentially abundant metabolites (DAMs) between trypsin-treated and control peppers. The trypsin treatment induced changes in sugar metabolism, modulating the expression of HK, SUS, INV, and GLGC, which affected the abundance of metabolites such as CDP-glucose and α-D-p-glucose. Trypsin also enhanced carotenoid metabolism, altering the abundance of rhodopinal glucoside, 1'-hydroxyl-γ-carotene glucoside, and farnesyl 1-PP, and influencing the expression of PDS, CRTH, CRTB, and LUT5. Notably, the trypsin treatment activated the mitogen-activated protein kinase (MAPK) pathway that plays an integral role in the signal transduction of abiotic stress. Differential expression of FLS2, ELF18, PTO, PR1, PTI5, WPKY, MEKK1, and MPK6 genes in the MAPK pathway was observed, which was correlated with CI mitigation in green peppers during cold storage. In conclusion, trypsin is an effective treatment for reducing CI in green peppers during cold storage. The present study provides valuable insights into its physiological and molecular impact on green pepper fruit.


Asunto(s)
Capsicum , Frío , Frutas , Proteínas de Plantas , Tripsina , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Capsicum/crecimiento & desarrollo , Frutas/química , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Almacenamiento de Alimentos , Conservación de Alimentos/métodos , Regulación de la Expresión Génica de las Plantas , Metabolómica
15.
Plant Methods ; 20(1): 99, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951818

RESUMEN

BACKGROUND: Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS: In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION: The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.

16.
Plant Dis ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054605

RESUMEN

Anthracnose, a destructive fungal disease, poses a significant threat to chili pepper (Capsicum annuum L.) production worldwide (de Silva et al. 2019). In South Korea, anthracnose outbreaks have traditionally been attributed to several Colletotrichum species such as C. gloeosporioides and C. acutatum. About 10% of the yield (chili production) is lost annually in South Korea due to chili anthracnose (Oo et al. 2020). During field surveys conducted in August 2017, symptomatic lesions resembling anthracnose were observed on chili pepper in two farmer's fields (Gochang and Cheongyang) in South Korea. Affected fruits exhibited characteristic symptoms, including circular sunken lesions with dark margins and abundant orange spore masses on the surface. About 20% of chili pepper fruit were affected in each field with an area of about 0.2 ha. Five putative Colletotrichum spp. isolates were obtained from six affected fruits (three from each field) following the procedure described by Cai et el. (2009). Three isolates (C01049, C01111, and C01115), representing each location, were selected to identify at the species level. Colonies on potato dextrose agar (incubated at 25°C in the dark for 7 days) were cottony with entire margins, white aerial mycelium and dark gray in the center. Conidia were hyaline, aseptate, cylindrical with bothnds round, and 17.8 - 30.5 × 6.0 -10.0 µm (mean 23.8 ×7.9 µm, n = 30). Appressoria were dark brown, irregular but mostly ovoid with smooth walls. These morphological features align with those of Colletotrichum spp. within the Colletotrichum gigasporum species (Liu et al. 2014). The identity of the pathogen was further confirmed through multi-locus phylogenetic analysis. The target genes including ITS, ACT, CHS-1, GAPDH, TUB2, and GS were amplified and sequenced using the primer sets ITS1/ITS4, ACT 512F/ ACT-783R, CHS-79F/ CHS-345R, GDF/GDR, T1/Bt2b, and GSF1/GSR1, respectively (Weir et al. 2012; Liu et al. 2014). The resulting sequences were deposited in GenBank (accession no: ITS: MT605261, MT605262, LC823714; ACT: MT612991, MT612992, LC823718; CHS-1: MT612993, MT612994, LC823717; GAPDH: LC811375, LC811376, LC823716; TUB2: MT612997, MT612998, LC823715; GS: LC811377, LC811378, LC823719). The constructed Bayesian and maximum likelihood tree based on combined sequences of ITS, ACT, CHS-1, GAPDH, TUB2, and GS confirmed the identification of the isolates (C01049, C01111, C01115) as C. gigasporum. Pathogenicity tests were conducted by inoculating healthy chili fruit with 70 µL of a conidial suspension (1×106 conidia /mL) of pure cultures of the isolates. The conidial suspension was applied on 10 wounded or 10 non-wounded fruit. The same number of fruit were treated with sterile distilled water as controls. Within 5 days of inoculation, symptoms consistent with anthracnose developed on the inoculated wounded fruit, whereas non-wounded and control fruit remained asymptomatic. This experiment was repeated twice. Colletotrichum gigasporum was re-isolated from diseased tissue of inoculated fruit. Colletotrichum gigasporum has been identified as the cause of anthracnose on Dalbergia odorifera, Carica papaya in China, and Brassica oleracea in India (Wan et al., 2018; Saini et al. 2022; He et al. 2023). To the best of our knowledge, this report marks the first documented instance of C. gigasporum causing anthracnose of chili pepper in South Korea. These results indicate that various species of Colletotrichum can be the fungi causing chili pepper anthracnose. The findings of this study emphasize the need for effective disease management strategies to mitigate impact of C. gigasporum on chili pepper cultivation in the region.

17.
Front Microbiol ; 15: 1383526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040904

RESUMEN

Objective: Rhizosphere microorganisms play crucial roles in the growth and development of plants, disease resistance, and environmental adaptability. As the only wild pepper variety resource in China, domesticated Capsicum frutescens Linn. (Xiaomila) exhibits varying beneficial traits and affects rhizosphere microbial composition compared with its wild counterparts. In this study, we aimed to identify specific rhizosphere microbiome and metabolism patterns established during the domestication process. Methods: The rhizosphere microbial diversity and composition of domesticated and wild C. frutescens were detected and analyzed by metagenomics. Non-targeted metabolomics were used to explore the differences of metabolites in rhizosphere soil between wild and domesticated C. frutescens. Results: We found that the rhizosphere microbial diversity of domesticated variety was significantly different from that of the wild variety, with Massilia being its dominant bacteria. However, the abundance of certain beneficial microbes such as Gemmatimonas, Streptomyces, Rambibacter, and Lysobacter decreased significantly. The main metabolites identified in the wild variety included serylthreonine, deoxyloganic acid, vitamin C, among others. In contrast, those identified in the domesticated group were 4-hydroxy-l-glutamic acid and benzoic acid. Furthermore, the differentially enriched pathways were concentrated in tyrosine and tryptophan biosynthesis, histidine and purine-derived alkaloids biosynthesis, benzoic acid family, two-component system, etc. Conclusion: This study revealed that C. frutescens established specific rhizosphere microbiota and metabolites during domestication, which has important significance for the efficient utilization of beneficial microorganisms in breeding and cultivation practices.

18.
Plant Signal Behav ; 19(1): 2383822, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39052485

RESUMEN

Parthenocarpy, characterized by seedless fruit development without pollination or fertilization, offers the advantage of consistent fruit formation, even under challenging conditions such as high temperatures. It can be induced by regulating auxin homeostasis; PAD1 (PARENTAL ADVICE-1) is an inducer of parthenocarpy in Solanaceae plants. However, precise editing of PAD1 is not well studied in peppers. Here, we report a highly efficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) for CaPAD1 editing in three valuable cultivars of pepper (Capsicum annuum L.): Dempsey, a gene-editable bell pepper; C15, a transformable commercial inbred line; and Younggo 4, a Korean landrace. To achieve the seedless pepper trait under high temperatures caused by unstable climate change, we designed five single guide RNAs (sgRNAs) targeting the CaPAD1 gene. We evaluated the in vitro on-target activity of the RNP complexes in three cultivars. Subsequently, we introduced five CRISPR/Cas9-RNP complexes into protoplasts isolated from three pepper leaves and compared indel frequencies and patterns through targeted deep sequencing analyses. We selected two sgRNAs, sgRNA2 and sgRNA5, which had high in vivo target efficiencies for the CaPAD1 gene across the three cultivars and were validated as potential off-targets in their genomes. These findings are expected to be valuable tools for developing new seedless pepper cultivars through precise molecular breeding of recalcitrant crops in response to climate change.


Asunto(s)
Sistemas CRISPR-Cas , Capsicum , Edición Génica , Protoplastos , Ribonucleoproteínas , Capsicum/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Protoplastos/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 15: 1357986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011303

RESUMEN

Introduction: Domestic production of pepper (Capsicum spp.) is shrinking while demand within the US is growing. Lack of availability and cost of labor often present an obstacle for domestic producers both practically and economically. As a result, switching to harvesting peppers mechanically is anticipated as a key strategy to help domestic producers compete in the international market. Mechanical harvest efficiency can be improved through breeding. One important trait that mechanical harvest compatible material should have is an easy destemming trait: low force separation of the pedicel and calyx from the fruit. Methods: To detect the genetic sources underlying a novel easy destemming trait for the purpose of future breeding efforts in New Mexico pod-type green chile, we performed QTL analysis on three F2:F3 populations, coming from three New Mexico pod-type varieties: 'NuMex Odyssey,' 'NuMex Iliad,' and 'NuMex Joe E. Parker,' each crossed with a parent with an easy destemming trait: MUC14. Genotyping was done through genotyping by sequencing (GBS) and phenotyping was done for destemming and fruit trait measurements. Correlations between measurements were found through the R package hmisc and QTL analysis was done through R/qtl. Results: A strong relationship was seen between destemming and aspects of fruit morphology, particularly, destemming force and fruit width (Pearson's correlation coefficient r=0.75). Major QTLs for destemming and fruit size were discovered. Of these, the largest destemming force QTLs for all populations (PVE=34.5-69.9%) were on chromosome 10, and in two populations QTLs for destemming force were found on chromosome 3 (Percent Variance Explained (PVE)=10.7-18.8%). Fruit size-related QTLs in all populations colocalized in these same areas on chromosomes 3 and 10. Discussion: This suggests that fruit shape may be genetically linked to destemming, and breeders interested in selecting for easy destemming pepper will also have to pay attention to fruit size and shape.

20.
Foods ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998472

RESUMEN

Chili peppers (Capsicum annuum L.) are economically valuable crops belonging to the Solanaceae family and are popular worldwide because of their unique spiciness and flavor. In this study, differences in the metabolomes of landrace (Subicho) and disease-resistant pepper cultivars (Bulkala and Kaltanbaksa) widely grown in Korea are investigated using a 1H NMR-based metabolomics approach. Specific metabolites were abundant in the pericarp (GABA, fructose, and glutamine) and placenta (glucose, asparagine, arginine, and capsaicin), highlighting the distinct physiological and functional roles of these components. Both the pericarp and placenta of disease-resistant pepper cultivars contained higher levels of sucrose and hexoses and lower levels of alanine, proline, and threonine than the traditional landrace cultivar. These metabolic differences are linked to enhanced stress tolerance and the activation of defense pathways, imbuing these cultivars with improved resistance characteristics. The present study provides fundamental insights into the metabolic basis of disease resistance in chili peppers, emphasizing the importance of multi-resistant varieties to ensure sustainable agriculture and food security. These resistant varieties ensure a stable supply of high-quality peppers, contributing to safer and more sustainable food production systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA