Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Plants (Basel) ; 13(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39204722

RESUMEN

The use of individual protective covers (IPCs) to protect newly planted citrus trees from Huanglongbing (HLB) infection is being widely adopted in Florida, an HLB-endemic citrus-producing area. It is known that IPCs positively influence most horticultural traits, increasing tree growth, flush expansion, and leaf size, enabling trees to sustain balanced carbohydrate metabolism by preventing Candidatus Liberibacter asiaticus (CLas) infection, and inducing higher leaf chlorophyll levels. This may result in more productive trees. However, as the tree grows, IPCs eventually are removed, typically between 2 and 3 years after their initial installation. Once IPCs are removed, trees become exposed to the Asian citrus psyllid (ACPs) and ultimately become infected. In this work, we covered Valencia sweet orange trees with IPCs for 30 months, until the trees entered fruit-bearing age. We investigated how the IPC protection of newly planted trees for 30 months influenced the fruit quality and yield of "Valencia" trees for three consecutive seasons after IPC removal compared to non-covered trees. The use of IPCs kick-started the newly planted citrus trees, resulting in higher yields and fruits with better internal and external quality. After 30 months of IPC protection, tree canopies were larger and denser, supporting more fruit per tree than non-protected trees for three consecutive seasons, even though by the end of the first season after IPC removal, the trees were HLB-positive. Tree height, scion diameter, canopy volume, and leaf area were significantly improved compared to non-covered trees. Additionally, fruit quality was significantly improved in the three seasons following IPC removal compared to non-covered trees. However, a decline in quality was measurable in fruit from IPC trees after the second harvesting season, with trees affected by HLB. Based on the results from this study, we conclude that the benefits from IPC protection may last for at least three consecutive seasons once trees enter the productive age, despite CLas infection within 12 months after IPC removal.

2.
Mol Plant Pathol ; 25(9): e70002, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215961

RESUMEN

Citrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, 'Candidatus Liberibacter asiaticus' (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)-mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis 'Wanjincheng' enhanced plant susceptibility to CLas. We found that methionine sulphoxide reductase B1 (CsMsrB1) was targeted by the effector, and its abundance was elevated in CLas0185-transgenic citrus plants. Their interaction promoted CLas proliferation. We then determined that CsMsrB1 sustained redox state and enzymatic activity of ascorbate peroxidase 1 (CsAPX1) under oxidative stress. The latter reduced H2O2 accumulation and was associated with host susceptibility to CLas infection. Consistently, citrus plants expressing CLas0185 and CsMsrB1 conferred enhanced APX activity and decreased H2O2 content. Taken together, these findings revealed how CLas0185 benefits CLas colonization by targeting CsMsrB1, which facilitated the antioxidant activity and depressed ROS during pathogen infection.


Asunto(s)
Ascorbato Peroxidasas , Citrus sinensis , Metionina Sulfóxido Reductasas , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Citrus sinensis/microbiología , Ascorbato Peroxidasas/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Metionina Sulfóxido Reductasas/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiología , Peróxido de Hidrógeno/metabolismo , Liberibacter , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
Insect Sci ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881212

RESUMEN

The Asian citrus psyllid, Diaphorina citri, is the primary vector of the HLB pathogen, Candidatus Liberibacter asiaticus (CLas). The acquisition of CLas shortens the developmental period of nymphs, accelerating the emergence into adulthood and thereby facilitating the spread of CLas. Cuticular proteins (CPs) are involved in insect emergence. In this study, we investigated the molecular mechanisms underlying CLas-promoted emergence in D. citri via CP mediation. Here, a total of 159 CP genes were first identified in the D. citri genome. Chromosomal location analysis revealed an uneven distribution of these CP genes across the 13 D. citri chromosomes. Proteomic analysis identified 54 differentially expressed CPs during D. citri emergence, with 14 CPs exhibiting significant differential expression after CLas acquisition. Five key genes, Dc18aa-1, Dc18aa-2, DcCPR-24, DcCPR-38 and DcCPR-58, were screened from the proteome and CLas acquisition. The silencing of these 5 genes through a modified feeding method significantly reduced the emergence rate and caused various abnormal phenotypes, indicating the crucial role that these genes play in D. citri emergence. This study provides a comprehensive overview of the role of CPs in D. citri and reveals that CLas can influence the emergence process of D. citri by regulating the expression of CPs. These key CPs may serve as potential targets for future research on controlling huanglongbing (HLB) transmission.

4.
Phytopathology ; : PHYTO05240171SC, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38916945

RESUMEN

'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening disease, is transmitted by the Asian citrus psyllid, Diaphorina citri, in a propagative, circulative, and persistent manner. Unfortunately, 'Ca. L. asiaticus' is not yet available in pure culture to carry out Koch's postulates and to confirm its etiology. When a pure culture is available, an assay to test its infectivity in both the insect vector and the plant host will be crucial. Herein, we described a transmission assay based on the use of phloem sap extracted from infected citrus plants and topical feeding to D. citri nymphs. Phloem sap was collected by centrifugation, diluted with 0.1 M phosphate buffer pH 7.4 containing 20% (wt/vol) sucrose and 0.1% ascorbic acid (wt/vol) as an antioxidant, and delivered to third through fifth instar nymphs by placing droplets on the mouthparts. Nymphs unfolded the stylets and acquired the phloem sap containing the bacterial pathogen. Nymphs were then placed onto Citrus macrophylla seedlings (10 nymphs per seedling) for an inoculation period of 2 weeks. A transmission rate of up to 80% was recorded at 6 months postinoculation. The method could be a powerful tool to test the transmissibility of the bacterial pathogen after various treatments to reduce the viability of the bacteria or to block its transmission. In addition, it might be a potent assay to achieve Koch's postulates if a pure culture of 'Ca. L. asiaticus' becomes available.

5.
Annu Rev Phytopathol ; 62(1): 243-262, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38691871

RESUMEN

São Paulo, Brazil, and Florida, USA, were the two major orange production areas in the world until Huanglongbing (HLB) was discovered in São Paulo in 2004 and Florida in 2005. In the absence of resistant citrus varieties, HLB is the most destructive citrus disease known because of the lack of effective tools to reduce spread of the vector, Diaphorina citri (Asian citrus psyllid), and transmission of the associated pathogen, Candidatus Liberibacter asiaticus. In both countries, a three-pronged management approach was recommended and begun: planting only disease-free nursery trees, effective psyllid control, and removal of all symptomatic trees. In Brazil, these management procedures were continued and improved and resulted in relatively little overall loss of production. In contrast, in Florida the citrus industry has been devastated with annual production reduced by approximately 80%. This review compares and contrasts various cultural and pest management strategies that have been used to reduce infection by the pathogen and increase tolerance of HLB in the main orange-growing regions in the world.


Asunto(s)
Citrus , Hemípteros , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Florida , Brasil , Citrus/microbiología , Hemípteros/microbiología , Hemípteros/fisiología , Animales , Control de Insectos , Rhizobiaceae/fisiología , Insectos Vectores/microbiología , Insectos Vectores/fisiología
6.
Elife ; 132024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602271

RESUMEN

The bacterium responsible for a disease that infects citrus plants across Asia facilitates its own proliferation by increasing the fecundity of its host insect.


Asunto(s)
Citrus , Hemípteros , Animales , Citrus/microbiología , Plantas , Reproducción , Asia , Enfermedades de las Plantas/microbiología
7.
Front Plant Sci ; 15: 1388163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660443

RESUMEN

Introduction: Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results: In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion: This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.

8.
Plant Dis ; : PDIS12232593RE, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38657079

RESUMEN

The phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the putative causal pathogen of the severe Asiatic form of huanglongbing (citrus greening) and is most commonly transmitted by the Asiatic citrus psyllid Diaphorina citri. CLas severely affects many Citrus species and hybrids and has been recorded in the Citrus relative, orange jasmine, Murraya paniculata (L.) Jack (syn. M. exotica L.). In this study, 13 accessions of three Murraya species (M. paniculata, M. sumatrana Roxb., and M. lucida [G.Forst.] Mabb.) and the Papuan form of a putative hybrid (M. omphalocarpa Hayata) were identified morphologically and molecularly based on sequence identity of the matK-5'trnK region of the chloroplast genome, and infection on these plants under field conditions was determined by PCR and quantitative real-time PCR (qPCR) on two to four occasions over 14 months. CLas was repeatedly detected in leaflet midribs by PCR and qPCR on four and three accessions of M. paniculata and M. sumatrana, respectively. It was not detected in leaflet midribs of single accessions of M. lucida and M. omphalocarpa. The species identification of the CLas-positive accessions was further confirmed using all the molecular taxonomic markers consisting of the six fragments of the maternally inherited chloroplast genome and part of the nuclear-encoded internal transcribed spacer (ITS) region. The results indicated that natural infection of M. paniculata and M. sumatrana with CLas can occur in Java. To our knowledge, this is the first demonstration of the natural infection of M. sumatrana with CLas. Further studies are required to determine whether infections persist in the absence of D. citri.

9.
Mol Plant Microbe Interact ; 37(5): 459-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597923

RESUMEN

Citrus Huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CLas), is one of the most destructive citrus diseases worldwide, and defense-related Citrus sinensis gene resources remain largely unexplored. Calcium signaling plays an important role in diverse biological processes. In plants, a few calcium-dependent protein kinases (CDPKs/CPKs) have been shown to contribute to defense against pathogenic microbes. The genome of C. sinensis encodes dozens of CPKs. In this study, the role of C. sinensis calcium-dependent protein kinases (CsCPKs) in C. sinensis defense was investigated. Silencing of CsCPK6 compromised the induction of defense-related genes in C. sinensis. Expression of a constitutively active form of CsCPK6 (CsCPK6CA) triggered the activation of defense-related genes in C. sinensis. Complementation of CsCPK6 rescued the defense-related gene induction in an Arabidopsis thaliana cpk4/11 mutant, indicating that CsCPK6 carries CPK activity and is capable of functioning as a CPK in Arabidopsis. Moreover, an effector derived from CLas inhibits defense induced by the expression of CsCPK6CA and autophosphorylation of CsCPK6, which suggests the involvement of CsCPK6 and calcium signaling in defense. These results support a positive role for CsCPK6 in C. sinensis defense against CLas, and the autoinhibitory regulation of CsCPK6 provides a potential genome-editing target for improving C. sinensis defense. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Citrus sinensis , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Proteínas Quinasas , Citrus sinensis/genética , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Resistencia a la Enfermedad/genética , Liberibacter/genética , Liberibacter/fisiología
10.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652336

RESUMEN

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Asunto(s)
Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Citrus/microbiología , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidad , Liberibacter/fisiología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiología , Resistencia a la Enfermedad/genética
11.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141015, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615986

RESUMEN

The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 µM and Vmax, 0.95 µmol/min/mg) and AICAR (Km, 34.81 µM and Vmax, 0.56 µmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 µM and Vmax, 2.87 µmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 µM and 34.2 µM, respectively) compared to AICAR (Kd, 83.4 µM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.


Asunto(s)
Aminoimidazol Carboxamida , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacología , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/metabolismo , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/química , Simulación del Acoplamiento Molecular , Ribonucleótidos/metabolismo , Ribonucleótidos/química , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Nucleótido Desaminasas/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Especificidad por Sustrato , Proliferación Celular/efectos de los fármacos , Transferasas de Hidroximetilo y Formilo/metabolismo , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/antagonistas & inhibidores , Complejos Multienzimáticos
12.
Bull Entomol Res ; 114(2): 210-229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444234

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.


Asunto(s)
Hemípteros , Glándulas Salivales , Transcriptoma , Animales , Hemípteros/microbiología , Hemípteros/genética , Glándulas Salivales/microbiología , Glándulas Salivales/metabolismo , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Liberibacter
13.
Microbiol Spectr ; 12(4): e0405223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38440971

RESUMEN

"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.


Asunto(s)
Citrus , Liberibacter , Rhizobiaceae , Citrus/microbiología , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Transcriptoma , Frutas/metabolismo , Metaboloma , Dinámica Poblacional , Fitoquímicos/metabolismo , Enfermedades de las Plantas/microbiología
14.
Front Plant Sci ; 15: 1357163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379950

RESUMEN

Introduction: Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods: To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results: DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion: This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.

15.
Plant Dis ; 108(6): 1455-1460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38252141

RESUMEN

Prophages/phages are important components of the genome of 'Candidatus Liberibacter asiaticus' (CLas), an unculturable alphaproteobacterium associated with citrus huanglongbing (HLB) disease. Phage variations have significant contributions to CLas strain diversity research, which provide critical information for HLB management. In this study, prophage variations among selected CLas strains from southern Texas were studied. The CLas strains were collected from three different CLas inhabitant environments: citrus leaf, citrus root, and Asian citrus psyllid (ACP), the vector of CLas. Regardless of the different habitats and time span, more than 80% of CLas strains consistently had both Type 1 and Type 2 prophages, the same prophage type profile as in CLas strains from Florida but different to those reported in California and China. Further studies were performed on prophage type diversity. Analyses on Type 1-specific PCR amplicon sequences (encoding an endolysin protein) revealed the presence of two groups: Type 1-A, clustered around prophage SC1 originating from Florida, and Type 1-B, clustered with prophage P-SGCA5-1 originating in California. Type 1-B strains were mostly from ACP of nearby citrus orchards. On the other hand, analyses on Type 2-specific PCR amplicon sequences (encoding a putative hypothetical protein) showed a single group clustering around prophage SC2 originated from Florida, although a different Type 2 prophage has been reported in California. The presence of two distinct Type 1 prophage groups suggested the possibility of two different CLas introductions in southern Texas. The results from this study provide an initial baseline of information on genomic and population diversity of CLas in Texas.


Asunto(s)
Citrus , Filogenia , Enfermedades de las Plantas , Profagos , Profagos/genética , Texas , Citrus/microbiología , Citrus/virología , Enfermedades de las Plantas/microbiología , Variación Genética , Animales , Hemípteros/microbiología , Hemípteros/virología , Rhizobiaceae/genética , Rhizobiaceae/clasificación , Rhizobiaceae/virología , Rhizobiaceae/aislamiento & purificación , Análisis de Secuencia de ADN , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Raíces de Plantas/microbiología , Raíces de Plantas/virología , Datos de Secuencia Molecular , Liberibacter
16.
Plants (Basel) ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276775

RESUMEN

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.

17.
BMC Genom Data ; 24(1): 63, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37923990

RESUMEN

OBJECTIVES: "Candidatus Liberibacter asiaticus" (CLas) is an un-culturable α-proteobacterium that caused citrus Huanglongbing (HLB), a destructive disease threatening citrus production worldwide. In China, the presence of HLB was first reported in Chaoshan region of Guangdong province, China around a century ago. Thus, whole genome information of CLas strains from Chaoshan area become the most important resource to understand the population diversity and evaluation of CLas in China. DATA DESCRIPTION: CLas strain GDCZ was originally from Chaozhou city (Chaoshan area) and sequenced using PacBio Sequel long-read sequencing and Illumina short-read sequencing. The genome of strain GDCZ comprised of 1,230,507 bp with an average G + C content of 36.4%, along with a circular CLasMV1 phage: CLasMV1_GDCZ (8,869 bp). The CLas strain GDCZ contained a Type 2 prophage (37,452 bp) and encoded a total of 1,057 open reading frames and 53 RNA genes. The whole genome sequence of CLas strain GDCZ from the historical HLB endemic region in China will serve as a useful resource for further analyses of CLas evolution and HLB epidemiology in China and world.


Asunto(s)
Liberibacter , Rhizobiaceae , Liberibacter/genética , Rhizobiaceae/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Profagos/genética , China/epidemiología
18.
Plant Dis ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971894

RESUMEN

Candidatus Liberibacter spp is the most prevalent microorganism in the citrus plant, associated with Citrus Huanglongbing (HLB), which is transmitted by the psyllid vector. In Colombia, the vector Diaphorina citri Kugayama has been reported in different regions, but "Ca. Liberibacter asiaticus" (CLas) has only been detected in insect vectors, not in citrus host plants. To identify the presence and quantify the pathogen in citrus tissues, we employed a combined strategy that involved three techniques based on polymerase chain reaction (PCR). First, we used endpoint PCR with specific primers for CLas (OI1-OI2c) to confirm the infection. Second, we used qPCR with specific primers CIT295a - CIT298 designed on 16S rDNA gene regions to quantify the pathogen load. Finally, we employed droplet digital PCR (ddPCR) to determine the copy number of the pathogen in citrus tissues using the ß-subunit of ribonucleotide reductase (RNR) gene (nrdB) that is specific to CLas. We identified the presence of CLas in citrus plants for the first time in Colombia and quantified its titer in the plant tissue. We employed ddPCR and qPCR to provide crucial information for the country's disease management, control strategies, and general crop health.

19.
Heliyon ; 9(9): e19715, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809984

RESUMEN

Huanglongbing (HLB) or citrus greening currently is the most devastating citrus disease worldwide. Unfortunately, no practical cure has been available up to now. This makes the control of HLB as early as possible very important to be conducted. The objective of this study was to investigate the efficacy of the application of salicylic acid (SA) and Phenylacetic acid (PAA) on one-year-old seedlings of different citrus species (Citrus reticulata, C. sinensis, C. aurantifolii) growing on C. volkameriana and C. aurantium by soil drench methods. Factorial analysis of variance showed the percent change in "Candidatus Liberibacter asiaticus" titer and disease severity on a different combination of citrus species growing on the two rootstocks treated with inducers and Oxytetracycline (OTC) were significantly different compared to the untreated plants. SA alone or in combination with OTC provided excellent (P-value < 0.05) control of HLB based on all parameters. The interaction between both factors (Rootstocks x Citrus species) significantly influenced the Ct value (P-value = 0.0001). "Candidatus Liberibacter asiaticus" titer in plants treated with OTC was reduced significantly with a range of -18.75 up to -78.42. Overall, the highest reduction was observed in the application of OTC on sweet orange growing on C. volkameriana (-78.42), while the lowest reduction was observed in the same cultivar which was treated with a combination of SA and OTC (-3.36). Induction of pathogenesis-related (PR) genes, i.e., PR1, PR2, and PR15, biosynthesis of Jasmonic acid and ethylene which are also important pathways to defense activity were also significantly increased in treated plants compared to untreated plants. This study suggests that the application of inducer alone is acceptable for HLB management. We proposed the application of SA and PAA as a soil drench on the citrus seedlings as promising, easy, and environmentally safe for HLB disease control on citrus seedlings.

20.
Phytopathology ; 113(9): 1708-1715, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37665323

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Liberibacter , Haplotipos , Enfermedades de las Plantas/microbiología , Hemípteros/microbiología , Productos Agrícolas , Rhizobiaceae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA