Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Imaging ; 10(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38249009

RESUMEN

Higher standards have been proposed for detection systems since camouflaged objects are not distinct enough, making it possible to ignore the difference between their background and foreground. In this paper, we present a new framework for Camouflaged Object Detection (COD) named FSANet, which consists mainly of three operations: spatial detail mining (SDM), cross-scale feature combination (CFC), and hierarchical feature aggregation decoder (HFAD). The framework simulates the three-stage detection process of the human visual mechanism when observing a camouflaged scene. Specifically, we have extracted five feature layers using the backbone and divided them into two parts with the second layer as the boundary. The SDM module simulates the human cursory inspection of the camouflaged objects to gather spatial details (such as edge, texture, etc.) and fuses the features to create a cursory impression. The CFC module is used to observe high-level features from various viewing angles and extracts the same features by thoroughly filtering features of various levels. We also design side-join multiplication in the CFC module to avoid detail distortion and use feature element-wise multiplication to filter out noise. Finally, we construct an HFAD module to deeply mine effective features from these two stages, direct the fusion of low-level features using high-level semantic knowledge, and improve the camouflage map using hierarchical cascade technology. Compared to the nineteen deep-learning-based methods in terms of seven widely used metrics, our proposed framework has clear advantages on four public COD datasets, demonstrating the effectiveness and superiority of our model.

2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37447638

RESUMEN

Camouflaged object detection (COD) aims to segment those camouflaged objects that blend perfectly into their surroundings. Due to the low boundary contrast between camouflaged objects and their surroundings, their detection poses a significant challenge. Despite the numerous excellent camouflaged object detection methods developed in recent years, issues such as boundary refinement and multi-level feature extraction and fusion still need further exploration. In this paper, we propose a novel multi-level feature integration network (MFNet) for camouflaged object detection. Firstly, we design an edge guidance module (EGM) to improve the COD performance by providing additional boundary semantic information by combining high-level semantic information and low-level spatial details to model the edges of camouflaged objects. Additionally, we propose a multi-level feature integration module (MFIM), which leverages the fine local information of low-level features and the rich global information of high-level features in adjacent three-level features to provide a supplementary feature representation for the current-level features, effectively integrating the full context semantic information. Finally, we propose a context aggregation refinement module (CARM) to efficiently aggregate and refine the cross-level features to obtain clear prediction maps. Our extensive experiments on three benchmark datasets show that the MFNet model is an effective COD model and outperforms other state-of-the-art models in all four evaluation metrics (Sα, Eϕ, Fßw, and MAE).


Asunto(s)
Benchmarking , Semántica
3.
Med Phys ; 50(10): 6151-6162, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37134002

RESUMEN

BACKGROUND: Whole-body Metabolic Tumor Volume (MTVwb) is an independent prognostic factor for overall survival in lung cancer patients. Automatic segmentation methods have been proposed for MTV calculation. Nevertheless, most of existing methods for patients with lung cancer only segment tumors in the thoracic region. PURPOSE: In this paper, we present a Two-Stage cascaded neural network integrated with Camouflaged Object Detection mEchanisms (TS-Code-Net) for automatic segmenting tumors from whole-body PET/CT images. METHODS: Firstly, tumors are detected from the Maximum Intensity Projection (MIP) images of PET/CT scans, and tumors' approximate localizations along z-axis are identified. Secondly, the segmentations are performed on PET/CT slices that contain tumors identified by the first step. Camouflaged object detection mechanisms are utilized to distinguish the tumors from their surrounding regions that have similar Standard Uptake Values (SUV) and texture appearance. Finally, the TS-Code-Net is trained by minimizing the total loss that incorporates the segmentation accuracy loss and the class imbalance loss. RESULTS: The performance of the TS-Code-Net is tested on a whole-body PET/CT image data-set including 480 Non-Small Cell Lung Cancer (NSCLC) patients with five-fold cross-validation using image segmentation metrics. Our method achieves 0.70, 0.76, and 0.70, for Dice, Sensitivity and Precision, respectively, which demonstrates the superiority of the TS-Code-Net over several existing methods related to metastatic lung cancer segmentation from whole-body PET/CT images. CONCLUSIONS: The proposed TS-Code-Net is effective for whole-body tumor segmentation of PET/CT images. Codes for TS-Code-Net are available at: https://github.com/zyj19/TS-Code-Net.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Redes Neurales de la Computación , Torso/patología , Procesamiento de Imagen Asistido por Computador/métodos
4.
Multimed Tools Appl ; 82(4): 5785-5801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968408

RESUMEN

The purpose of camouflaged object detection (COD) is to identify the hidden camouflaged object in an input image. Compared with other binary segmentation tasks like salient object detection, COD needs to deal with more complex scenes, such as low contrast, similar foreground and background. In this work, we proposed a novel guided multi-scale refinement network for COD. Specifically, we first design a global perception module for coarse localization by stacking multi-scale residual block on the top of the backbone in a recurrent manner. Then, we propose the guided multi-scale refinement module to refine such initial prediction progressively, which is combined with multi-level side-output features in a prediction-to-feature fusion strategy. By plugging into side-output features for multi-scale guidance, the missing object parts and false detection can be well remedied. Experimental results show that our proposed network can more accurately locate the camouflaged object and salient object with sharpened details than existing state-of-the-art approaches. In addition, our model is also very efficient and compact, which enables potential real-world applications.

5.
Entropy (Basel) ; 24(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36554209

RESUMEN

In recent years, protecting important objects by simulating animal camouflage has been widely employed in many fields. Therefore, camouflaged object detection (COD) technology has emerged. COD is more difficult to achieve than traditional object detection techniques due to the high degree of fusion of objects camouflaged with the background. In this paper, we strive to more accurately and efficiently identify camouflaged objects. Inspired by the use of magnifiers to search for hidden objects in pictures, we propose a COD network that simulates the observation effect of a magnifier called the MAGnifier Network (MAGNet). Specifically, our MAGNet contains two parallel modules: the ergodic magnification module (EMM) and the attention focus module (AFM). The EMM is designed to mimic the process of a magnifier enlarging an image, and AFM is used to simulate the observation process in which human attention is highly focused on a particular region. The two sets of output camouflaged object maps were merged to simulate the observation of an object by a magnifier. In addition, a weighted key point area perception loss function, which is more applicable to COD, was designed based on two modules to give greater attention to the camouflaged object. Extensive experiments demonstrate that compared with 19 cutting-edge detection models, MAGNet can achieve the best comprehensive effect on eight evaluation metrics in the public COD dataset. Additionally, compared to other COD methods, MAGNet has lower computational complexity and faster segmentation. We also validated the model's generalization ability on a military camouflaged object dataset constructed in-house. Finally, we experimentally explored some extended applications of COD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA