Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.011
Filtrar
1.
J Am Coll Cardiol ; 84(12): 1064-1075, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39260927

RESUMEN

BACKGROUND: Medical therapy for aortic stenosis (AS) remains an elusive goal. OBJECTIVES: This study sought to establish whether evogliptin, a dipeptidyl peptidase-4 inhibitor, could reduce AS progression. METHODS: A total of 228 patients (age 67 ± 11 years; 33% women) with AS were randomly assigned to receive placebo (n = 75), evogliptin 5 mg (n = 77), or evogliptin 10 mg (n = 76). The primary endpoint was the 96-week change in aortic valve calcium volume (AVCV) on computed tomography. Secondary endpoints included the 48-week change in active calcification volume measured using 18F-sodium fluoride positron emission tomography (18F-NaF PET). RESULTS: There were no significant differences in the 96-week changes in AVCV between evogliptin 5 mg and placebo (-5.27; 95% CI: -55.36 to 44.82; P = 0.84) or evogliptin 10 mg and placebo (-18.83; 95% CI: -32.43 to 70.10; P = 0.47). In the placebo group, the increase in AVCV between 48 weeks and 96 weeks was higher than that between baseline and 48 weeks (136 mm3; 95% CI: 108-163 vs 102 mm3; 95% CI: 75-129; P = 0.0485). This increasing trend in the second half of the study was suppressed in both evogliptin groups. The 48-week change in active calcification volume on 18F-NaF PET was significantly lower in both the evogliptin 5 mg (-1,325.6; 95% CI: -2,285.9 to -365.4; P = 0.008) and 10-mg groups (-1,582.2; 95% CI: -2,610.8 to -553.5; P = 0.0038) compared with the placebo group. CONCLUSIONS: This exploratory study did not demonstrate the protective effect of evogliptin on AV calcification. Favorable 18F-NaF PET results and possible suppression of aortic valve calcification with longer medication use in the evogliptin groups suggest the need for larger confirmatory trials. (A Multicenter, Double-blind, Placebo-controlled, Stratified-randomized, Parallel, Therapeutic Exploratory Clinical Study to Evaluate the Efficacy and Safety of DA-1229 in Patients With Calcific Aortic Valve Disease; NCT04055883).


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Progresión de la Enfermedad , Humanos , Femenino , Masculino , Anciano , Calcinosis/tratamiento farmacológico , Calcinosis/diagnóstico por imagen , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Persona de Mediana Edad , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Método Doble Ciego , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Resultado del Tratamiento , Tomografía Computarizada por Rayos X , Piperazinas
2.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261663

RESUMEN

The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake. We identify 89 high-confidence interactors that link MCUC to several mitochondrial complexes and pathways, half of which are associated with human disease. As a proof-of-concept, we validate the mitochondrial intermembrane space protein EFHD1 as a binding partner of the MCUC subunits MCU, EMRE, and MCUB. We further show a MICU1-dependent inhibitory effect of EFHD1 on calcium uptake. Next, we systematically survey compensatory mechanisms and functional consequences of mitochondrial calcium dyshomeostasis by analyzing the MCU interactome upon EMRE, MCUB, MICU1, or MICU2 knockdown. While silencing EMRE reduces MCU interconnectivity, MCUB loss-of-function leads to a wider interaction network. Our study provides a comprehensive and high-confidence resource to gain insights into players and mechanisms regulating mitochondrial calcium signaling and their relevance in human diseases.

3.
Int Immunopharmacol ; 142(Pt B): 113158, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293314

RESUMEN

AIM OF THE STUDY: Osteolysis in Rheumatoid arthritis (RA) is principally provoked by osteoclast hyperactivity. This study aims to employ Corydaline (Cory), a plant extract, as an osteoclast inhibitor in treating RA-inflicted osteolysis while unveiling the corresponding mechanism. MATERIALS AND METHODS: Osteoclasts were derived from mouse bone marrow-derived monocytes (BMMs) stimulated with M-CSF and RANKL. Subsequently, utilizing network pharmacology, we performed a thorough analysis of Cory's molecular structure and discerned its preliminary therapeutic potential. Subsequently, LPS was used to simulate and establish an in vitro model of RA, and the biological effect of Cory on osteoclast behaviors was evaluated through various staining methods, RT-qPCR, and Western blot. In addition, a collagen-induced arthritis (CIA) mouse model was developed to evaluate the therapeutic effects of Cory in vivo. RESULTS: The results from network pharmacology indicated a significant correlation between Cory, oxidative stress, and calcium signaling. Subsequent in vitro experiments demonstrated Cory's capacity to inhibit the formation and function of osteoclast under inflammatory stimuli, thereby protecting against abnormal bone resorption. This effect is achieved by activating the Nrf2 signaling pathway, mitigating the generation of reactive oxygen species (ROS), and modulating the calcineurin-Nfatc1 signaling. Furthermore, this therapeutic effect of Cory on RA-associated osteolysis was proved in CIA mice models. CONCLUSIONS: Cory demonstrates the potential to activate the Nrf2 signaling pathway, effectively countering oxidative stress, and simultaneously inhibit the calcineurin-Nfatc1 signaling pathway to regulate the terminals of calcium signaling. These dual effects collectively reduce osteoclast activity, ultimately contributing to a therapeutic role in RA osteolysis. Therefore, our study presents Cory as a novel pharmaceutical candidate for the prevention and treatment of RA.

4.
Sci Rep ; 14(1): 20419, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223291

RESUMEN

Activin A and hepatic stellate cells (HSCs) are involved in tissue repair and fibrosis in liver injury. This study investigated the impact of activin A on HSC activation and migration. A microfluidic D4-chip was used for examining the cell migration of mouse hepatic stellate cell line MHSteC. The analysis of differentially expressed genes revealed that activin ßA (Inhba), activin receptor type 1A (Acvr1a) and type 2A (Acvr2a) mRNAs were more significantly expressed in human HSCs than in the hepatocytes. Moreover, activin A promoted MHSteC proliferation and induced MHSteC migration. Furthermore, the MHSteCs treated with activin A exhibited increased levels of migration-related proteins, N-cadherin, Vimentin, α-SMA, MMP2 and MMP9, but a decreased level of E-cadherin. Additionally, activin A treatment significantly increased the p-Smad3 levels and p-Smad3/Smad3 ratio in the MHSteCs, and the Smad3 inhibitor SIS3 attenuated activin A-induced MHSteC proliferation and migration. Simultaneously, activin A increased the calcium levels in the MHSteCs, and the migratory effects of activin A on MHSteCs were weakened by the intracellular calcium ion-chelating agent BAPTA-AM. These data indicate that activin A can promote MHSteC activation and migration through the canonical Smad3 signaling and calcium signaling.


Asunto(s)
Activinas , Señalización del Calcio , Movimiento Celular , Proliferación Celular , Células Estrelladas Hepáticas , Proteína smad3 , Células Estrelladas Hepáticas/metabolismo , Movimiento Celular/efectos de los fármacos , Proteína smad3/metabolismo , Animales , Activinas/metabolismo , Ratones , Humanos , Línea Celular
5.
Cell Calcium ; 124: 102955, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278009

RESUMEN

Wolfram syndrome (WS) is an incurable autosomal recessive disorder originally described as a mitochondriopathy. In a recent work, Liiv and colleagues found that an impaired endoplasmic reticulum (ER)-to-mitochondria calcium shuttling underlies mitochondrial dysfunction in WS models.

6.
Eye Vis (Lond) ; 11(1): 37, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237996

RESUMEN

BACKGROUND: Thyroid eye disease (TED) is a vision-threatening autoimmune disorder. Orbital tissue fibrosis leading to intractable complications remains a troublesome issue in TED management. Exploration of novel therapeutic targets and agents to ameliorate tissue fibrosis is crucial for TED. Recent work suggests that Ca2+ signaling participates in tissue fibrosis. However, whether an alteration of Ca2+ signaling has a role in fibrogenesis during TED remains unclear. In this study, we aimed to investigate the role of Ca2+ signaling in the fibrogenesis process during TED and the potential therapeutic effects of a highly selective inhibitor of the L-type calcium channel (LTCC), nimodipine, through a TGF-ß1 induced in vitro TED model. METHODS: Primary culture of orbital fibroblasts (OFs) were established from orbital adipose connective tissues of patients with TED and healthy control donors. Real-time quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing were used to assess the genes expression associated with LTCC in OFs. Flow cytometry, RT-qPCR, 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay, wound healing assay and Western blot (WB) were used to assess the intracellular Ca2+ response on TGF-ß1 stimulation, and to evaluate the potential therapeutic effects of nimodipine in the TGF-ß1 induced in vitro TED model. The roles of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and signal transducer and activator of transcription 1 (STAT1) in fibrogenesis during TED were determined by immunohistochemistry, WB, flow cytometry and co-immunoprecipitation assay. Selective inhibitors were used to explore the downstream signaling pathways. RESULTS: LTCC inhibitor nimodipine blocked the TGF-ß1 induced intracellular Ca2+ response and further reduced the expression of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (Col1A1) and collagen type I alpha 2 (Col1A2) in OFs. Besides, nimodipine inhibited cell proliferation and migration of OFs. Moreover, our results provided evidence that activation of the CaMKII/STAT1 signaling pathway was involved in fibrogenesis during TED, and nimodipine inhibited the pro-fibrotic functions of OFs by down-regulating the CaMKII/STAT1 signaling pathway. CONCLUSIONS: TGF-ß1 induces an LTCC-mediated Ca2+ response, followed by activation of CaMKII/STAT1 signaling pathway, which promotes the pro-fibrotic functions of OFs and participates in fibrogenesis during TED. Nimodipine exerts potent anti-fibrotic benefits in vitro by suppressing the CaMKII/STAT1 signaling pathway. Our work deepens our understanding of the fibrogenesis process during TED and provides potential therapeutic targets and alternative candidate for TED.

7.
Heliyon ; 10(16): e36063, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229522

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system. Forskolin (FSK) is a plant-derived diterpene with excellent immunomodulatory properties and has not been systematically reported for treating MS. This study investigated the therapeutic effects of FSK on cellular and animal MS models and preliminarily explored related mechanisms. The results showed that FSK suppressed the inflammatory response, reduced the expression of STEAP4, and relieved iron deposition in BV-2 cells pretreated by LPS at the cellular level. Meanwhile, at the animal level, FSK treatment halted the progression of experimental autoimmune encephalomyelitis (EAE), alleviated the damage at the lesion sites, reduced the concentration of proinflammatory factors in peripheral blood, and inhibited the immune response of peripheral immune organs in EAE mice. Besides, FSK treatment decreased the expression of STEAP4 in the spinal cord and effectively restored the iron balance in the brain, spinal cord, and serum of EAE mice. Further investigation showed that FSK can reduce IL-17 expression, prevent the differentiation of TH17 cells, and inhibit the calcium signaling pathway. Thus, these results demonstrate that FSK may have the potential to treat MS clinically.

8.
Biol Res ; 57(1): 65, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261966

RESUMEN

Increasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e. calcitonin gene-related peptide (CGRP) and substance P (SP). Nonetheless, still little is known about the cell signaling pathways and mechanism of action in neurovascular coupling. Here, in order to characterize the communication between SNs and ECs at molecular level, we evaluated the effect of SNs and the neuropeptides CGRP and SP on ECs. We focused on different pathways known to play a role on endothelial functions: calcium signaling, p38 and Erk1/2; the control of signal propagation through Cx43; and endothelial functions through the production of nitric oxide (NO). The effect of SNs was evaluated on ECs Ca2+ influx, the expression of Cx43, endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, p38, ERK1/2 as well as their phosphorylated forms. In addition, the role of CGRP and SP were either analyzed using respective antagonists in the co-culture model, or by adding directly on the ECs monocultures. We show that capsaicin-stimulated SNs induce increased Ca2+ influx in ECs. SNs stimulate the increase of NO production in ECs, probably involving a decrease in the inhibitory eNOS T495 phosphorylation site. The neuropeptide CGRP, produced by SNs, seems to be one of the mediators of this effect in ECs since NO production is decreased in the presence of CGRP antagonist in the co-culture of ECs and SNs, and increased when ECs are stimulated with synthetic CGRP. Taken together, our results suggest that SNs play an important role in the control of the endothelial cell functions through CGRP production and NO signaling pathway.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Células Endoteliales , Óxido Nítrico , Células Receptoras Sensoriales , Transducción de Señal , Sustancia P , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Sustancia P/farmacología , Sustancia P/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Animales , Óxido Nítrico/metabolismo , Técnicas de Cocultivo , Comunicación Celular/fisiología , Comunicación Celular/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Cultivadas , Humanos , Ratas
9.
Front Mol Neurosci ; 17: 1392408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268251

RESUMEN

Rodent studies have shown that alternative splicing in neurons plays important roles in development and maturity, and is regulatable by signals such as electrical activity. However, rodent-human similarities are less well explored. We compared basal and activity-dependent exon splicing in cortical-patterned human ESC-derived neurons with that in cortical mouse ESC-derived neurons, primary mouse cortical neurons at two developmental stages, and mouse hippocampal neurons, focussing on conserved orthologous exons. Both basal exon inclusion levels and activity-dependent changes in splicing showed human-mouse correlation. Conserved activity regulated exons are enriched in RBFOX, SAM68, NOVA and PTBP targets, and centered on cytoskeletal organization, mRNA processing, and synaptic signaling genes. However, human-mouse correlations were weaker than inter-mouse comparisons of neurons from different brain regions, developmental stages and origin (ESC vs. primary), suggestive of some inter-species divergence. The set of genes where activity-dependent splicing was observed only in human neurons were dominated by those involved in lipid biosynthesis, signaling and trafficking. Study of human exon splicing in mouse Tc1 neurons carrying human chromosome-21 showed that neuronal basal exon inclusion was influenced by cis-acting sequences, although may not be sufficient to confer activity-responsiveness in an allospecific environment. Overall, these comparisons suggest that neuronal alternative splicing should be confirmed in a human-relevant system even when exon structure is evolutionarily conserved.

10.
Essays Biochem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268917

RESUMEN

Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.

11.
Nutrients ; 16(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125265

RESUMEN

Uncarboxylated osteocalcin (ucOC) is a hormone secreted by osteoblasts that strengthens bone during mineralization and is a biomarker for ongoing bone formation. It also regulates glucose homeostasis by stimulating insulin secretion from pancreatic ß-cells. However, its effect on ß-cells under hyperglycemic diabetic conditions is unclear. The objective of this study was to investigate ucOC's effect on insulin secretion in ß-cells maintained under high glucose conditions. We hypothesized that hyperglycemia potentiates insulin secretion in response to ucOC stimulation. Using INS-1 cells, we performed insulin secretion experiments, intracellular calcium recordings, and RT-qPCR to determine ucOC's effect on glucose-stimulated insulin secretion (GSIS)-related genes. The results reveal that ucOC significantly increased insulin secretion under hyperglycemic conditions compared to lower glucose levels. High glucose conditions also potentiated the effect of ucOC on calcium signals, which enhanced insulin secretion. The increase in intracellular calcium was due to an influx from the extracellular space via voltage-dependent calcium channels (VDCCs). Interestingly, the treatment of cells with NPS-2143, a GPRC6A blocker, failed to abolish the calcium signals. Uncarboxylated osteocalcin upregulated the expression of GSIS-related genes under high glucose conditions (450 mg/dL) compared to cells under standard culture conditions (200 mg/dL). In conclusion, hyperglycemia potentiates ucOC-induced insulin secretion in ß-cells by opening VDCCs and upregulating GSIS genes. These findings provide a better understanding of ucOC's mechanism in the diabetic state and could lead to alternative treatments to stimulate insulin secretion.


Asunto(s)
Hiperglucemia , Secreción de Insulina , Células Secretoras de Insulina , Osteocalcina , Animales , Osteocalcina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Hiperglucemia/metabolismo , Ratas , Secreción de Insulina/efectos de los fármacos , Insulina/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Línea Celular , Señalización del Calcio/efectos de los fármacos
12.
Curr Opin Plant Biol ; 81: 102618, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153327

RESUMEN

Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.


Asunto(s)
Inmunidad de la Planta , Plantas , Transducción de Señal , Plantas/inmunología , Plantas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/inmunología
13.
Cell Calcium ; 123: 102945, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39191091

RESUMEN

Orai1 is a plasma membrane Ca2+ channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE. SPLUNC1 was not proteolytically stable, so we developed ELD607, an 11 amino acid peptide based on SPLUNC1's α6 region which was more stable and more potent than SPLUNC1/α6. Here, we studied ELD607's mechanism of action. We overexpressed either Orai1-HA or Orai1-YFP in HEK293T cells to probe ELD607-Orai1 interactions by confocal microscopy. We also measured changes in Fluo-4 fluorescence in a multiplate reader as a marker of cytoplasmic Ca2+ levels. ELD607 internalized Orai1 independently of STIM1. Both 15 min and 3 h exposure to ELD607 similarly depleted Orai1 in the plasma membrane. However, 3 h exposure to ELD607 yielded greater inhibition of SOCE. ELD607 continued to colocalize with Orai1 after internalization and this process was dependent on the presence of the ubiquitin ligase NEDD4.2. Similarly, ELD607 increased the colocalization between Orai1 and ubiquitin. ELD607 also increased the colocalization between Orai1 and Rab5 and 7, but not Rab11, suggesting that Orai1 trafficked through early and late but not recycling endosomes. Finally, ELD607 caused Orai1, but not Orai2, Orai3, or STIM1 to traffic to lysosomes. We conclude that ELD607 rapidly binds to Orai1 and works in an identical fashion as full length SPLUNC1 by internalizing Orai1 and sending it to lysosomes, leading to a decrease in SOCE.


Asunto(s)
Calcio , Lisosomas , Proteína ORAI1 , Humanos , Proteína ORAI1/metabolismo , Células HEK293 , Calcio/metabolismo , Lisosomas/metabolismo , Canales de Calcio/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Proteínas de Unión al GTP rab/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(36): e2407765121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39207733

RESUMEN

Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.


Asunto(s)
Calcio , Citosol , Eritrocitos , Canales Iónicos , Canales Iónicos/metabolismo , Humanos , Eritrocitos/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Hemólisis
15.
Microbiol Spectr ; : e0122924, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162502

RESUMEN

Apicomplexan parasites mobilize ionic calcium (Ca2+) from intracellular stores to promote microneme secretion and facilitate motile processes including gliding motility, invasion, and egress. Recently, a multipass transmembrane protein, ICM1, was found to be important for calcium mobilization in Plasmodium falciparum and P. berghei. Comparative genomics and phylogenetics have revealed putative ICM orthologs in Toxoplasma gondii and other apicomplexans. T. gondii possesses two ICM-like proteins, which we have named TgICM1-L (TGGT1_305470) and TgICM2-L (TGGT1_309910). TgICM1-L and TgICM2-L localized to undefined puncta within the parasite cytosol. TgICM1-L and TgICM2-L are individually dispensable in tachyzoites, suggesting a potential compensatory relationship between the two proteins may exist. Surprisingly, mutants lacking both TgICM1-L and TgICM2-L are fully viable, exhibiting no obvious defects in growth, microneme secretion, invasion, or egress. Furthermore, loss of TgICM1-L, TgICM2-L, or both does not impair the parasite's ability to mobilize Ca2+. These findings suggest that additional proteins may participate in Ca2+ mobilization or import in Apicomplexa, reducing the dependence on ICM-like proteins in T. gondii. Collectively, these results highlight similar yet distinct mechanisms of Ca2+ mobilization between T. gondii and Plasmodium.IMPORTANCECa2+ signaling plays a crucial role in governing apicomplexan motility; yet, the mechanisms underlying Ca2+ mobilization from intracellular stores in these parasites remain unclear. In Plasmodium, the necessity of ICM1 for Ca2+ mobilization raises the question of whether this mechanism is conserved in other apicomplexans. Investigation into the orthologs of Plasmodium ICM1 in T. gondii revealed a differing requirement for ICM proteins between the two parasites. This study suggests that T. gondii employs ICM-independent mechanisms to regulate Ca2+ homeostasis and mobilization. Proteins involved in Ca2+ signaling in apicomplexans represent promising targets for therapeutic development.

16.
NeuroImmune Pharm Ther ; 3(2): 139-154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39175523

RESUMEN

Objectives: Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods: Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results: Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion: Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.

17.
Med Int (Lond) ; 4(6): 62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161881

RESUMEN

Transient receptor potential canonical channel 6 (TRPC6) is a non-selective cation channel that is activated by diacylglycerol. It belongs to the TRP superfamily, is expressed in numerous tissues and has been shown to be associated with diseases, such as focal segmental glomerulosclerosis, idiopathic pulmonary arterial hypertension and cardiac hypertrophy. The investigation of the channel in human lymphoid tissues has thus far been limited to mRNA analysis or the western blotting of isolated lymphoid cell lines. The present study aimed to detect the channel in human lymphoid tissue using immunohistochemistry. For this purpose, lymphatic tissues were obtained from body donors. The lymphatic organs analyzed included the lymph nodes, spleen, palatine tonsil, gut-associated lymphoid tissues (ileum and vermiform appendix) and thymus. A total of 102 samples were obtained and processed for hematoxylin and eosin (H&E) staining. The H&E staining method was employed to identify five samples with good morphology. In total, three samples of the palatine tonsil of patients were included. Immunostaining was carried out using a knockout-validated anti-TRPC6 antibody. As shown by the results, using immunohistochemical staining, the presence of TRPC6 was confirmed in all the analyzed lymphatic tissue samples. Lymphocytes in lymph nodes, spleen, palatine tonsil, thymus, and gut-associated lymphatic tissues in ileum and vermiform appendix exhibited a positive staining signal. The follicle-associated epithelium of the palatine tonsil, ileum and appendix also demonstrated staining. Vessels of the lymphatic organs, particularly the trabecular arteries of the spleen, the submucosal vessels of the appendix and ileum, as well as the high endothelial venules in the palatine tonsils and lymphatic vessels of the lymph nodes expressed TRPC6 protein. TRPC6 in follicles may be involved in the immune response. TRPC6 in high endothelial venules suggests a role in leukocyte migration. The role of TRPC6 and other channels of the TRP family in lymphatic organs warrant further investigations to elucidate whether TRP channels are a pharmacological target.

18.
Neurochem Res ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120794

RESUMEN

Autism spectrum disorder (ASD) is known as a group of neurodevelopmental conditions including stereotyped and repetitive behaviors, besides social and sensorimotor deficits. Anatomical and functional evidence indicates atypical maturation of the striatum. Astrocytes regulate the maturation and plasticity of synaptic circuits, and impaired calcium signaling is associated with repetitive behaviors and atypical social interaction. Spontaneous calcium transients (SCT) recorded in the striatal astrocytes of the rat were investigated in the preclinical model of ASD by prenatal exposure to valproic acid (VPA). Our results showed sensorimotor delay, augmented glial fibrillary acidic protein -a typical intermediate filament protein expressed by astrocytes- and diminished expression of GABAA-ρ3 through development, and increased frequency of SCT with a reduced latency that resulted in a diminished amplitude in the VPA model. The convulsant picrotoxin, a GABAA (γ-aminobutyric acid type A) receptor antagonist, reduced the frequency of SCT in both experimental groups but rescued this parameter to control levels in the preclinical ASD model. The amplitude and latency of SCT were decreased by picrotoxin in both experimental groups. Nipecotic acid, a GABA uptake inhibitor, reduced the mean amplitude only for the control group. Nevertheless, nipecotic acid increased the frequency but diminished the latency in both experimental groups. Thus, we conclude that striatal astrocytes exhibit SCT modulated by GABAA-mediated signaling, and prenatal exposure to VPA disturbs this tuning.

19.
IUBMB Life ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39139071

RESUMEN

Senescent cells are typically characterized by a stable proliferation arrested in dividing cells accompanied with a senescence-associated secretory phenotype (SASP). Skin cellular senescence is the primary cause of skin aging, whereas the lack of identified skin senescence markers limits our understanding of the mechanisms involved in skin aging. Recent studies have revealed that intracellular calcium signaling has emerged as a key player in regulating cellular senescence and aging. However, the implication and roles of calcium signaling in skin keratinocyte senescence remain only partially understood. In this study, we developed a model for skin keratinocyte senescence using ionizing radiation (I/R) stimulation and found that the calcium-associated gene transglutaminase 2 (TGM2) was significantly induced compared with normal control. Interestingly, inhibition of TGM2 was found to delay skin keratinocyte senescence by suppressing I/R-promoted intracellular calcium signaling, accumulation of reactive oxygen species (ROS), DNA damage, as well as NF-κB-mediated SASP secretion. Taken together, our findings demonstrate that inhibition of TGM2 contributes to bypassing I/R-induced skin keratinocyte senescence and sheds light on novel strategies against skin stresses caused by I/R.

20.
Biochem Biophys Res Commun ; 735: 150487, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096885

RESUMEN

Spinal Cord Injury (SCI) is a significant neurological disorder that can result in severe motor and cognitive impairments. Neuronal regeneration and functional recovery are critical aspects of SCI treatment, with calcium signaling being a crucial indicator of neuronal excitability. In this study, we utilized a murine model to investigate the effects of targeted wireless electrical stimulation (ES) on neuronal activity following SCI. After establishing a complete SCI model in normal mice, flexible electrodes were implanted, and targeted wireless ES was administered to the injury site. We employed fiber-optic photometric in vivo calcium imaging to monitor calcium signals in pyramidal neurons within the CA3 region of the hippocampus and the M1 region of the primary motor cortex. The experimental results demonstrated a significant reduction in calcium signals in CA3 and M1 pyramidal neurons following SCI (reduced by 76 % and 59 %, in peak respectively). However, the application of targeted wireless ES led to a marked increase in calcium signals in these neurons (increased by 118 % and 69 %, in peak respectively), indicating a recovery of calcium activity. These observations suggest that wireless ES has a positive modulatory effect on the excitability of pyramidal neurons post-SCI. Understanding these mechanisms is crucial for developing therapeutic strategies aimed at enhancing neuronal recovery and functional restoration following spinal cord injuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA