Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274027

RESUMEN

The utilization of biopolymers incorporated with antimicrobial agents is extremely interesting in the development of environmentally friendly functional materials for food packaging and other applications. In this study, the effect of calcium oxide (CaO) on the morphological, mechanical, thermal, and hydrophilic properties as well as the antimicrobial activity of carboxymethyl chitosan (CMCH) bio-composite films was investigated. The CMCH was synthesized from shrimp chitosan through carboxymethylation, whereas the CaO was synthesized via a co-precipitation method with polyethylene glycol as a stabilizer. The CMCH-CaO bio-composite films were prepared by the addition of synthesized CaO into the synthesized CMCH using a facile solution casting method. As confirmed by XRD and SEM, the synthesized CaO has a cubic shape, with an average crystalline size of 25.84 nm. The synthesized CaO exhibited excellent antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (>99.9% R). The addition of CaO into CMCH improved the mechanical and hydrophobic properties of the CMCH-CaO films. However, it resulted in a slight decrease in thermal stability. Notably, the CMCH-CaO10% films exhibited exceptional antimicrobial activity against E. coli (98.8% R) and S. aureus (91.8% R). As a result, such bio-composite films can be applied as an active packaging material for fruit, vegetable, or meat products.

2.
Food Chem ; 463(Pt 2): 141252, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288455

RESUMEN

This study aimed to determine the effect of calcium fortification from dried oyster shells (DOS) and calcined oyster shells (COS) at concentrations of 2, 4 and 6 %(w/w) on physical and chemical properties of tapioca pearls. The results showed that the optimal cooking time of TP-COS decreased compared to TP-DOS and TP (control). The TP-DOS and TP-COS exhibited a remaining calcium content ranging from 8.39 to 41.03 mg/g. During seven days of refrigerated storage, TP-COS showed delayed hardness along with decreases in both the enthalpy of gelatinization and retrogradation. The functional groups observed in TP-DOS and TP-COS showed varying intensities compared to TP. Morphology images depicted the distribution of DOS and COS within tapioca pearls, revealing that TP-DOS and TP-COS possessed a denser and more compact structure. The results suggest that COS fortification could improve the nutritional value and delay the change in the texture of tapioca pearls after storage.

3.
Materials (Basel) ; 17(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124539

RESUMEN

Waste oyster shells were utilized to produce calcium carbonate (CaCO3) by grinding. This CaCO3 was then reacted with acetic acid to yield calcium acetate monohydrate (Ca(CH3COO)2·H2O). Both CaCO3 and Ca(CH3COO)2·H2O were used as precursors for synthesizing calcium oxide (CaO) through thermal decomposition at 900 °C and 750 °C, respectively. The yields of CaO from both precursors, determined through calcination experiments and thermogravimetric analysis (TGA), exceeded 100% due to the high purity of the raw agents and the formation of calcium hydroxide (Ca(OH)2). X-ray fluorescence (XRF) analysis revealed a CaO content of 87.8% for CaO-CC and 91.5% for CaO-CA, indicating the purity and contamination levels. X-ray diffraction (XRD) patterns confirmed the presence of CaO and minor peaks of Ca(OH)2, attributed to moisture adsorption. Fourier-transform infrared (FTIR) spectroscopy identified the vibrational characteristics of the Ca-O bond. Scanning electron microscopy (SEM) showed similar morphologies for both CaO-CC and CaO-CA, with CaO-CA displaying a significant amount of rod-like crystals. Based on these results, calcium acetate monohydrate (CA) is recommended as the superior precursor for synthesizing high-purity CaO, offering advantages for various applications.

4.
Environ Pollut ; 361: 124750, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151785

RESUMEN

Calcium oxide (CaO), utilized in semi-dry/dry desulfurization systems at municipal solid waste incineration (MSWI) plants, demonstrates some capability to remove polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study assessed the gas-phase PCDD/F removal performance of CaO, activated carbon (AC) and CaO-AC mixtures. Alone, CaO achieved removal efficiencies of only 31.9% for mass and 50.8% for I-TEQ concentration. However, CaO-AC mixtures exhibited significantly higher efficiencies, reaching 96.0% and 92.5% for mass and I-TEQ concentrations, respectively, surpassing those of AC alone, which were 74.7% and 58.5%. BET analysis indicated that CaO's limited surface area and pore structure are major constraints on its adsorption performance. Density functional theory (DFT) calculations revealed that the π-π electron donor-acceptor (EDA) interaction enhances the adsorption between AC and PCDD/F, with adsorption energies ranging from -1.02 to -1.24 eV. Additionally, the induced dipole interactions between CaO and PCDD/F contribute to adsorption energies ranging from -1.13 to -1.43 eV. Moreover, with increasing chlorination levels, PCDD/F molecules are more predisposed to accept electron transfers from the surfaces of AC or CaO, thereby facilitating adsorption. The calculation for mixed AC and CaO showed that CaO modifies AC's properties, enhancing its ability to adsorb gas phase PCDD/Fs, with the higher adsorption energy and more electrons transfer, aligning with gas phase PCDD/Fs adsorption experiments. This study provides a comprehensive understanding of how CaO influences the PCDD/F adsorption performance of AC.

5.
J Environ Manage ; 368: 122239, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182380

RESUMEN

Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 µM) to minimize the toxic effect of Cr (100 µM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.


Asunto(s)
Antioxidantes , Clorofila , Nanopartículas , Oryza , Oryza/efectos de los fármacos , Oryza/genética , Antioxidantes/metabolismo , Clorofila/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Óxidos/toxicidad , Peróxido de Hidrógeno/metabolismo , Compuestos de Calcio/toxicidad , Cromo/toxicidad , Biodegradación Ambiental , Contaminantes del Suelo/toxicidad , Malondialdehído/metabolismo
6.
Materials (Basel) ; 17(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203301

RESUMEN

In the last decades, nano-silica (NS), nano-alumina (NA), and nano-calcium oxide (NC) particles have been incorporated into cementitious materials, and it seems that each one of them contributes uniquely to the materials' properties. This research explores the influence of each nanomaterial on the fresh properties of cement pastes and their compressive strength evolution over one year. Low proportions (1.5% by weight) of nanomaterials were added to cement pastes, and their fresh properties, such as heat of hydration and X-ray diffraction patterns in the first hours, were analyzed. The compressive strength and open porosity were also measured long-term. The acceleration of hydration heat in NA-cement pastes is linked to enhanced hydration product formation at early ages. Among the tested nanomaterials, NA increased compressive strength by 10% at later ages. Although the fresh properties of NC-cement pastes remained unaffected, their open porosity decreased by 54% at 28 days. In contrast, the increase in heat of hydration in NS-cement pastes did not result in significant strength improvement. Based on these findings, NA was selected for ultra-high-performance cement (UHPC)-based material use. Its incorporation not only preserved the ultra-high-performance (UHP) properties but also provided additional benefits such as an increase in compressive strength under a CO2 atmosphere. Through detailed analysis, this research establishes that nano-alumina incorporation optimizes the microstructural development and compressive strength of ultra-high-performance cement-based systems, presenting a novel advancement in enhancing the mechanical properties and durability of these materials under various environmental conditions.

7.
Food Sci Nutr ; 12(7): 4745-4760, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055208

RESUMEN

This study involved fortifying pumpkin slices with calcium and vitamin D3 using vacuum impregnation (VI) pre-treatment and assessing the quality characteristics of the resulting desserts/jams. Slices were subjected to immersion or VI pre-treatments for 30, 60, and 90 min in a solution containing calcium oxide and vitamin D3. Calcium ions contributed to the hardness of desserts, with VI reducing processing time. The highest impregnated calcium (58.17 mg/100 g fw) and vitamin D3 contents (6.02 mg/100 g dm) were determined in slices pre-treated by VI for 90 min. VI was more effective than immersion in terms of calcium and vitamin D3 transition into pumpkin tissues. Scanning electron microscope (SEM) images indicated that calcium oxide particles were noticeable in slices pre-treated by VI. Immersing fruit slices for 90 min produced desserts with a textural hardness of 11.04 N, while VI pre-treatment for the same duration increased their hardness value to 18.92 N. Desserts produced with VI-pre-treated slices exhibited superior texture and sensory attributes, with no adverse taste resulting from calcium oxide. In conclusion, VI pre-treatment shows significant potential for the industrial production of desserts/jams with enhanced structural integrity for fruits.

8.
Int J Biol Macromol ; 273(Pt 2): 132815, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825279

RESUMEN

Modern environmental organic chemistry is focused on developing cost-efficient, versatile, environmentally acceptable catalytic chemicals that are also highly effective. Herein, hybrid calcium-chitosan nanocomposite films was prepared by doping calcium oxide molecules into a chitosan matrix at weight percentage (15, 20, and 25 % wt. chitosan­calcium) using an easy and affordable simple co-precipitation process. The CS-CaO nanocomposite's structure was elucidated using analytical techniques such as Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Based on the X ray diffraction (XRD) measurements, the crystallinity was reduced by the incorporation of the CaO molecules. Also, from the calculation of the Debye-Scherrer equation on this X-ray diffraction (XRD) pattern, the crystallite size was found to be 17.2 nm for the nanocomposite film with 20 % wt. The energy dispersive spectroscopy graph demonstrated the presence of the distinctive Ca element signals within the chitosan, with the amount in a sample of 20 % wt. being discovered to be 21.32 % wt. For the synthesis of bis-hydrazono[1,2,4]thiadiazoles, the obtained CS-CaO nanocomposite could be employed as a potent heterogeneous recyclable catalyst. Better reaction yields, quicker reactions, softer reaction conditions, and green reusable efficient biocatalysts for several uses are just a few advantages of this approach.


Asunto(s)
Compuestos de Calcio , Quitosano , Tecnología Química Verde , Nanocompuestos , Óxidos , Quitosano/química , Nanocompuestos/química , Compuestos de Calcio/química , Óxidos/química , Tiadiazoles/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Catálisis
9.
J Hazard Mater ; 473: 134689, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788583

RESUMEN

The arsenopyrite activated by copper ions have similar flotation properties to chalcopyrite. Polyaspartic acid (PASP) and calcium oxide (CaO) using as combination depressants for the selective separation of copper-activated arsenopyrite and chalcopyrite were carried out by micro-flotation experiments, contact angle measurements, surface adsorption capacity tests, zeta potential measurements, X-ray photoelectron spectroscopy (XPS) analyses, inductively coupled plasma-optical emission spectrometer (ICP-OES) tests and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses, and its depression mechanism was investigated. The results of flotation experiments showed that the recovery of arsenopyrite after addition of the depressants reached only 7.80 %, while the recovery of chalcopyrite reached 94.02 %. The results of contact angles, adsorption capacity tests and zeta potential measurements showed that the PASP-CaO can selectively enhance the hydrophilicity of arsenopyrite surface, but has little effect on the chalcopyrite. XPS analyses and ICP-OES tests further verified that the depressants first eliminated the activation of copper ions and then selectively adsorbed on the surface of arsenopyrite. ToF-SIMS analyses showed that the PASP-CaO would achieve selective depression of arsenopyrite in the form of PASP, PASP-Ca complexes and Ca(OH)+, respectively. Finally, the mechanism diagram of PASP-CaO selectively depressing arsenopyrite was derived. These results will provide an excellent theoretical reference for the flotation separation of copper arsenic sulfide ore.

10.
Materials (Basel) ; 17(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793407

RESUMEN

Red mud (RM) is an industrial waste generated in the process of aluminum refinement. The recycling and reusing of RM have become urgent problems to be solved. To explore the feasibility of using RM in geotechnical engineering, this study combined magnesium oxide (MgO) (or calcium oxide (CaO)) with RM as an RM-based binder, which was then used to stabilize the soil. The physical, mechanical, and micro-structural properties of the stabilized soil were investigated. As the content of MgO or CaO in the mixture increased, the unconfined compressive strength (UCS) of the RM-based cementitious materials first increased and then decreased. For the soils stabilized with RM-MgO or RM-CaO, the UCS increased and then decreased, reaching a maximum at RM:MgO = 5:5 or RM:CaO = 8:2. The addition of sodium hydroxide (NaOH) promoted the hydration reaction. The UCS enhancement ranged from 8.09% to 66.67% for the RM-MgO stabilized soils and 204.6% to 346.6% for the RM-CaO stabilized soils. The optimum ratio of the RM-MgO stabilized soil (with NaOH) was 2:8, while that of the RM-CaO stabilized soil (with NaOH) was 4:6. Freeze-thaw cycles reduced the UCS of the stabilized soil, but the resistance of the stabilized soil to freeze-thaw erosion was significantly improved by the addition of RM-MgO or RM-CaO, and the soil stabilized with RM-MgO had better freeze-thaw resistance than that with RM-CaO. The hydrated magnesium silicate generated by the RM-MgO stabilized soil and the hydrated calcium silicate generated by the RM-CaO stabilized soil helped to improve the UCS of the stabilized soil. The freeze-thaw cycles did not weaken the formation of hydration products in the stabilized soil but could result in physical damage to the stabilized soils. The decrease in the UCS of the stabilized soil was mainly due to physical damage.

11.
J Prosthodont ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594924

RESUMEN

PURPOSE: Bioceramic coatings have been shown to promote bone repair, which aids in the early integration of implants. This study aimed to evaluate the influence of air abrasion with a bioceramic abrasive on the surface characteristics of different implant materials and surfaces. The dissolution of the applied treatment from the surfaces over 3 weeks was also assessed. MATERIALS AND METHODS: Discs of three alloys used for dental implants were studied and compared: two types of commercially pure titanium (CpTi)/ (CpTi SLActive) and titanium-zirconia (TiZr). The tested surfaces were: CpTi control (CpC), sandblasted (SB), sandblasted and acid-etched (SBE), and CpTi SLActive®, (TiZr) Roxolid®. Three discs from each group underwent air abrasion with apatite bioceramic powders, 95% hydroxyapatite (HA)/5% calcium oxide (CaO), and 90% hydroxyapatite (HA)/10% calcium oxide (CaO). The treated discs were surface characterized by optical profilometry to obtain surface roughness, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to compare element weight percentages of titanium, calcium, and phosphate. Dissolution was assessed using inductively coupled plasma optic emission spectrometry (ICP-OES). RESULTS: Bioceramic powders were deposited on all tested surfaces leading to changes in surface characteristics. The only statistically significant differences between the material groups for surface roughness were found with 95% HA/5% CaO powder in the Sp and Rp parameters (p = 0.03 and 0.04, respectively). There were no significant differences in the Ca and P wt% between all groups and powders 95% HA/5% CaO and 90% HA/10% CaO (p = 0.14, 0.18, and p = 0.15, 0.12, respectively). A non-uniform dispersion of the treatment on the surface layer was visible on all treated surfaces. The bioceramic powder continued to dissolute from the tested surfaces for 3 weeks. CONCLUSION: Bioceramic abrasion modifies implant surface characteristics, although the change in surface characteristics resulting from such treatment was not influenced by the implant material or surface treatment. Air abrasion with hydroxyapatite and calcium oxide bioceramics leaves powder deposits on the treated implant surfaces that could potentially influence the healing of implants affected by peri-implantitis.

12.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633155

RESUMEN

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Asunto(s)
Compuestos de Calcio , Nanopartículas del Metal , Óxido de Zinc , Animales , Escherichia coli , Óxido de Magnesio , Leche , Óxidos , Antibacterianos
13.
Heliyon ; 10(6): e27767, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38515665

RESUMEN

This study investigated the efficient removal of cadmium ions from aqueous solutions using calcium oxide nanoparticles (CaO NPs) synthesized from waste hen eggshells using a Sol-gel method and supported on corncob bio-adsorbent. The synthesized CaO NPs were characterized using FT-IR, XRD, specific surface area, and TGA. Batch adsorption experiments were conducted to examine the influence of process parameters such as adsorbent dosages, initial Cd (II) concentrations, pH values, and contact times. XRD analysis revealed that the synthesized CaO nanoparticles had a size of 24.34 nm and a specific surface area of 77.4 m2/g. The optimal conditions for achieving the highest percent removal of cadmium (99.108%) were found to be an initial concentration of 55 ppm, pH 7, adsorbent dose of 0.75 g, and contact time of 50 min. The experimental removal efficiency closely matched the predicted value (99.0%), indicating the suitability of the method used in optimizing the removal of Cd (II) ions from aqueous solutions. These findings, corroborated by predicted values, underscore the efficacy of our method in optimizing cadmium removal. Based on these findings, it can be concluded that corncob-supported CaO NPs are optimized for their highest efficiency and hold great promise as a cost-effective and environmentally friendly solution for wastewater treatment with a focus on cadmium removal.

14.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467361

RESUMEN

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Asunto(s)
Antibacterianos , Compuestos de Calcio , Eleusine , Nanopartículas , Extractos Vegetales , Semillas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Semillas/química , Nanopartículas/química , Antibacterianos/farmacología , Eleusine/química , Óxidos/química , Óxidos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
15.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338505

RESUMEN

This study investigated the efficacy of heated scallop shell powder (HSSP) treatment in preserving chicken thigh meat. Chicken thigh meat was treated with HSSP slurry (1% and 5%) for 60 min, and the variation in aerobic bacteria and coliform populations was assessed during refrigerated storage (10 °C). There was a substantial increase in aerobic bacteria, reaching nearly 7 log10 colony forming unit (CFU)/g following 7 days of refrigeration, in the untreated chicken meat. Conversely, the aerobic bacterial population of the HSSP-treated chicken was <5 log10 CFU/g. Coliform growth in the untreated chicken reached over 5 log10 CFU/g following 7 days. In contrast, the coliform population of the HSSP-treated chicken did not reach 5 log10 CFU/g at 1% HSSP concentration; it was suppressed to <4 log10 CFU/g at 5% concentration. Listeria monocytogenes, which can grow at low temperatures, was inoculated into the chicken meat (5 log10 CFU/g) treated with alcohol, which was followed by HSSP. In the untreated chicken, L. monocytogenes increased to 9 log10 CFU/g even when refrigerated for 7 days. However, in the chicken treated with 5% HSSP, L. monocytogenes was suppressed to approximately 3 log10 CFU/g. These findings reveal that HSSP treatment is an effective method for disinfecting meat, inhibiting bacterial growth, and enhancing preservation.

16.
Environ Sci Pollut Res Int ; 31(8): 12112-12130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38227257

RESUMEN

Since waste-to-value approach and having potential benefits in several applications, eggshell-derived calcium oxide (ECaO) produced from eggshells is attracting attention in the recent research. ECaO nanoparticles (NPs) were investigated here for its dual purpose in cleaning wastewater and as a nanopriming agent, since catalysts have an impact on seedlings even after being dumped in the soil. The initial comparison was between the adsorption capacities of naturally occurring ECaO and chemically synthesised CaO (CCaO), demonstrating that ECaO NPs had a higher adsorption capacity due to its greater porosity. Congo Red utilises ECaO NPs for both adsorption and photodegradation. Adsorption equilibrium was achieved with 93.4% in just 6 min, but photocatalysis requires 120 min to break down 95% of Congo Red, which is reduced to 45 min in sono-photocatalysis. Second, the priming impact of ECaO NPs on germination was investigated using monocot and dicot seeds. In contrast to phytotoxic effects at higher loadings, 50 mg/l of ECaO NPs demonstrated quicker floral development, stronger seedling growth and higher chlorophyll content.


Asunto(s)
Compuestos de Calcio , Rojo Congo , Cáscara de Huevo , Óxidos , Animales , Germinación , Plantones
17.
Chemosphere ; 349: 140955, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104737

RESUMEN

The activation of peroxymonosulfate (PMS) has gained significant interest in the removal of organic pollutants. However, traditional methods usually suffer from drawbacks such as secondary contamination and high energy requirements. In this study, we propose a green and cost-effective approach utilizing calcium oxide (CaO) to activate PMS, aiming to construct a simple and reliable PMS based advanced oxidation processes (AOPs). The proposed CaO/PMS system achieved fast degradation of methylene blue (MB), where the degradation rate of CaO/PMS system (0.24 min-1) was nearly 2.67 times that of PMS alone (0.09 min-1). Under the optimized condition, CaO/PMS system exhibited remarkable durability against pH changes, co-exists ions or organic matters. Furthermore, singlet oxygen (1O2) was identified as the dominant reactive oxygen species by electron paramagnetic resonance (EPR) and quenching tests. Accordingly, the degradation pathways of MB are proposed by combing the results of LC/MS analysis and density functional theory (DFT) calculations, and the predicted ecotoxicity of the generated byproducts evaluated by EOCSAR could provide systematic insights into the fates and environmental risks of MB. Overall, the study provides an eco-friendly and effective strategy for treating dyeing wastewater, which should shed light on the application of PMS based AOPs.


Asunto(s)
Azul de Metileno , Peróxidos , Compuestos de Calcio
18.
Cureus ; 15(9): e46293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37915867

RESUMEN

Background Various local drug delivery systems have been tried so far to target microorganisms responsible for periodontitis. However, none of them were effective enough to destroy the periodontal pathogens. This study aimed to analyze the antimicrobial, antioxidant, and anti-inflammatory properties of melatonin-loaded, calcium oxide nanoparticles-based neem and clove extract against oral pathogens to be further used as a local delivery agent. Methodology Powdered fresh neem leaves and clove buds were weighed, added to double distilled water, and then boiled for half an hour. Boiling helps in activating the phytochemicals present in the extract. The solution was boiled further to obtain a concentrated solution. To this 0.241 g of melatonin powder dissolved in 10 mL of double distilled water was added to the previous mixture and left undisturbed in a stirrer overnight. Results The properties of the extract such as antioxidant, antibacterial, anti-inflammatory, cytotoxicity, and embryonic toxicology were studied. In the case of antimicrobial activity, at 100 µg/mL, the zone of inhibition (ZOI) was the highest at 18 ± 0.16 µg/mL and the lowest at 13 ± 0.3 at 25 µg/mL for Candida albicans. Similarly, at 100 µg/mL, the ZOI was the highest at 15 ± 0.25 µg/mL and the lowest was 13 ± 0.12 at 25 µg/mL for Streptococcus mutans and Staphylococcus aureus. Similarly, in the case of antioxidant and anti-inflammatory properties, they showed increased activity with increased concentrations of 10, 20, 30, 40, and 50 µg/mL. Conclusions This study proves that melatonin-added extracts have antimicrobial, antioxidant, anti-inflammatory, and cytotoxic properties which are almost equal to that of the standard. This indicates that they can be possibly further used as local delivery drugs. Further animal or cell line studies should be conducted before experimenting this is in clinical trials for periodontitis patients.

19.
Water Res ; 243: 120380, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482011

RESUMEN

This study describes the improvements of adsorption capacities for raw calcium oxide (CaO) particles subjected to ultrasonication, activation with nitric acid and thermal treatments. The influence of acids and bases on CaO particle surface was assessed with respect to several variables including treatment methods, adsorption contact times, particle size and specific surface area characteristics, concentration and temperature along with various thermodynamic parameters. Structural analyses and physical characteristics of CaO particles were evaluated using FT-IR and SEM methods. SEM micrographs of samples revealed uniform distributions of CaO particles of average diameter 0.5-2.0 µm. The CaO surfaces showed CH3COOH as having the greatest amounts of adsorbate and modeling of the experimental adsorption isotherm data agreed well with the Freundlich adsorption isotherm. Enhancements in adsorption performance of untreated CaO particles were noted with the ultrasonication, activation with HNO3 and thermal treatment processes. The Langmuir-type adsorption demonstrated that single layer adsorption capacities of adsorbate CH3COOH at 25 oC on sonicated CaO (386.6 mg/g), with nitric acid and thermal activation (354.9 and 320.8 mg/g, respectively) were greater than that of the unsonicated CaO (296.3 mg/g) particles. Adsorption spontaneities of the processes were confirmed by the decreases in adsorption free energy values, ΔGads0, changing from -16.1 to -17.1 kJ mol-1 with temperature range 283-338 K.


Asunto(s)
Ácido Nítrico , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Óxidos , Compuestos de Calcio , Termodinámica , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
20.
Water Res ; 241: 120171, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295227

RESUMEN

Hydrogen sulfide (H2S) production from waste activated sludge (WAS) is the main reason for odor emission during anaerobic fermentation system. CaO has been reported to effectively improve the resources recovery of WAS, but its potential effect on H2S production in anaerobic fermentation process remains unrecognized. In present study, it was found that the addition of 60 mg/g VSS CaO greatly inhibited H2S production and the maximum yield of H2S was 60.1 ± 1.8% lower than the control. Mechanism investigation demonstrated that CaO destroyed sludge structure and increased the release of intracellular organic matter with hydrogen bonding networks destroying, but had a mild effect on the transformation of sulfur containing organic matters and inorganic sulfate reduction. Additionally, the enhancement in H+ and S2- consumption by alkaline condition and metal ions release was another reason for the inhibition of H2S production in CaO addition reactors. Furthermore, microbial analysis showed that CaO addition importantly reduced the hydrolysis microorganism, particularly denitrification hydrolytic bacterias (e.g., unclassified_f_Chitinophagaceae and Dechloromonas), sulfate reducing bacterias (SRBs) (e.g., unclassified_c_Deltaproteobacteria and Desulfosarcina) and genes (e.g., PepD, cysN/D, CysH/C and Sir) involved in organic sulfur hydrolysis and sulfate reduction. Results from this study provides theoretical insights into the practical applications of CaO.


Asunto(s)
Sulfuro de Hidrógeno , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fermentación , Sulfuro de Hidrógeno/análisis , Anaerobiosis , Azufre , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA