RESUMEN
A short and efficient methodology for the synthesis of chiral dioxa-caged compounds from levoglucosenone, a biomass-derived enone, is herein presented. The key transformation, that involves a cascade 3-step cationic cyclization, was efficiently carried out in high yields and selectivities by Montmorillonite K-10 catalysis. The usefulness of K-10 in related semi-pinacol rearrangements to obtain pyran-3-ones is also shown. Interesting differences in the reactivity pattern was found for epimeric alcohols, and the origins of these findings were determined by DFT calculations.
Asunto(s)
Bentonita/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Glucosa/análogos & derivados , Conformación de Carbohidratos , Catálisis , Técnicas de Química Sintética , Glucosa/síntesis química , Glucosa/química , Modelos Moleculares , EstereoisomerismoRESUMEN
Octahedral Ru(II) polypyridyl complexes constitute a superb platform to devise photoactive triggers capable of delivering entire molecules in a reliable, fast, efficient and clean way. Ruthenium coordination chemistry opens the way to caging a wide range of molecules, such as amino acids, nucleotides, neurotransmitters, fluorescent probes and genetic inducers. Contrary to other phototriggers, these Ru-based caged compounds are active with visible light, and can be photolysed even at 532 nm (green), enabling the use of simple and inexpensive equipment. These compounds are also active in the two-photon regime, a property that extends their scope to systems where IR light must be used to achieve high precision and penetrability. The state of the art and the future of ruthenium polypyridyl phototriggers are discussed, and several new applications are presented.
RESUMEN
Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.