Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1411000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220364

RESUMEN

Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.


Asunto(s)
Señalización del Calcio , Oocitos , Oocitos/metabolismo , Oocitos/fisiología , Humanos , Señalización del Calcio/fisiología , Femenino , Animales , Calcio/metabolismo , Fertilización/fisiología , Células del Cúmulo/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201597

RESUMEN

One of the major breakthroughs of neurobiology was the identification of distinct ranges of oscillatory activity in the neuronal network that were found to be responsible for specific biological functions, both physiological and pathological in nature. Astrocytes, physically coupled by gap junctions and possessing the ability to simultaneously modulate the functions of a large number of surrounding synapses, are perfectly positioned to introduce synchronised oscillatory activity into the neural network. However, astrocytic somatic calcium signalling has not been investigated to date in the frequency ranges of common neuronal oscillations, since astrocytes are generally considered to be slow responders in terms of Ca2+ signalling. Using high-frequency two-photon imaging, we reveal fast Ca2+ oscillations in the soma of astrocytes in the delta (0.5-4 Hz) and theta (4-8 Hz) frequency bands in vivo in the rat cortex under ketamine-xylazine anaesthesia, which is known to induce permanent slow-wave sleep. The high-frequency astrocytic Ca2+ signals were not observed under fentanyl anaesthesia, excluding the possibility that the signals were introduced by motion artefacts. We also demonstrate that these fast astrocytic Ca2+ signals, previously considered to be exclusive to neurons, are present in a large number of astrocytes and are phase synchronised at the astrocytic network level. We foresee that the disclosure of these high-frequency astrocytic signals may help with understanding the appearance of synchronised oscillatory signals and may open up new avenues of treatment for neurological conditions characterised by altered neuronal oscillations.


Asunto(s)
Astrocitos , Señalización del Calcio , Calcio , Astrocitos/metabolismo , Animales , Ratas , Calcio/metabolismo , Masculino , Ritmo Teta/fisiología , Ritmo Delta , Neuronas/metabolismo , Neuronas/fisiología
3.
Obstet Gynecol Sci ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086217

RESUMEN

Oocyte activation is a fundamental event in mammalian fertilization and is initiated by a cascade of calcium signaling and oscillation pathways. Phospholipase C zeta (PLCζ) is involved in modulating cortical granule exocytosis, releasing oocyte meiotic arrest, regulating gene expression, and early embryogenesis. These processes are considered to be initiated and controlled by PLCζ activity via the inositol-1,4,5-triphosphate pathway. The decrease or absence of functional PLCζ due to mutational defects in protein expression or maintenance can impair male fertility. In this literature review, we highlight the significance of PLCζ as a sperm factor involved in oocyte activation, its mechanism of action, the signaling pathway involved, and its close association with oocyte activation. Finally, we discuss the relationship between male infertility and PLCζ deficiency.

4.
FASEB J ; 38(15): e23864, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39109513

RESUMEN

Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.


Asunto(s)
Aedes , Receptores Acoplados a Proteínas G , Animales , Aedes/metabolismo , Aedes/genética , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Cricetulus , Conducta Alimentaria/fisiología , Mosquitos Vectores
5.
J Asian Nat Prod Res ; 26(2): 248-258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905564

RESUMEN

Four new alkaloids (1 - 4), together with five known ones (5 - 9), were isolated from the bulbs of Dactylicapnos scandens. The structures were determined by analysis of their spectroscopic data and quantum-chemical calculations. All the isolates were tested for their ability to modulate neuronal Ca2+ mobilization in primary cultured neocortical neurons. Compound 8 inhibited spontaneous Ca2+ oscillations at low micromolar concentrations.


Asunto(s)
Alcaloides , Alcaloides/química , Raíces de Plantas/química , Neuronas
6.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069089

RESUMEN

A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.


Asunto(s)
Calcio , Células Endoteliales , Células Endoteliales/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Endotelio/metabolismo , Calcio de la Dieta
7.
Cell Rep ; 42(10): 113232, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37824328

RESUMEN

TRPM7 (transient receptor potential cation channel subfamily M member 7) is a chanzyme with channel and kinase domains essential for embryo development. Using gamete-specific Trpm7-null lines, we report that TRPM7-mediated Mg2+ influx is indispensable for reaching the blastocyst stage. TRPM7 is expressed dynamically from gametes to blastocysts; displays stage-specific localization on the plasma membrane, cytoplasm, and nucleus; and undergoes cleavage that produces C-terminal kinase fragments. TRPM7 underpins Mg2+ homeostasis, and excess Mg2+ but not Zn2+ or Ca2+ overcomes the arrest of Trpm7-null embryos; expressing Trpm7 mRNA restores development, but mutant versions fail or are partially rescued. Transcriptomic analyses of Trpm7-null embryos reveal an abundance of oxidative stress-pathway genes, confirmed by mitochondrial dysfunction, and a reduction in transcription factor networks essential for proliferation; Mg2+ supplementation corrects these defects. Hence, TRPM7 underpins Mg2+ homeostasis in preimplantation embryos, prevents oxidative stress, and promotes gene expression patterns necessary for developmental progression and cell-lineage specification.


Asunto(s)
Desarrollo Embrionario , Magnesio , Canales Catiónicos TRPM , Animales , Ratones , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Canales Catiónicos TRPM/metabolismo , Magnesio/metabolismo
8.
J Clin Med ; 12(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37629337

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with ß-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.

9.
Physiol Rep ; 11(14): e15760, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37474273

RESUMEN

All currently employed pharmaceutical formulations of hydroxychloroquine (HCQ) sulfate are a racemate, consisting of equal parts mixture of two stereoisomers: R(-)HCQ and S(+)HCQ sulfates. The aims of the current study were first, to obtain and characterize pure HCQ enantiomers. The separation and purification of free base HCQ enantiomers from the racemate form were performed using semi-preparative chiral high-performance liquid chromatography. Second, we compared the pharmacological properties of both optical isomers and racemic mixture on the intracellular Ca2+ oscillations employing an in vitro model of human cardiomyocytes derived from induced pluripotent stem cells (iPSCs). The results of the pharmacological investigations indicate that the racemic and pure stereoisomer forms of HCQ sulfate exhibited a dose-dependent inhibition of spontaneous Ca2+ oscillations (as measured from their frequency and Ca2+ peak widths) in cardiomyocytes 5-45 min following exposure. In addition, the concentration-response relationships for all three compounds indicated that the rank order of potency (IC50 ) was R(-)HCQ >racemic HCQ >S(+)HCQ for the frequency of the Ca2+ oscillations and width of Ca2+ peaks for all time points examined. These studies indicate that both R(-) and S(+) stereoisomers exhibit differing pharmacological actions on hiPSC cardiomyocytes, with the former effecting a greater potency on cell Ca2+ handling.


Asunto(s)
Hidroxicloroquina , Células Madre Pluripotentes Inducidas , Humanos , Hidroxicloroquina/farmacología , Estereoisomerismo , Miocitos Cardíacos , Sulfatos
10.
Cell Signal ; 109: 110805, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437828

RESUMEN

Genetically encoded Ca2+ indicators have become widely used in cell signalling studies as they offer advantages over cell-loaded dye indicators in enabling specific cellular or subcellular targeting. Comparing responses from dye and protein-based indicators may provide information about indicator properties and cell physiology, but side-by-side recordings in cells are scarce. In this study, we compared cytoplasmic Ca2+ concentration ([Ca2+]i) changes in insulin-secreting ß-cells recorded with commonly used dyes and indicators based on circularly permuted fluorescent proteins. Total internal reflection fluorescence (TIRF) imaging of K+ depolarization-triggered submembrane [Ca2+]i increases showed that the dyes Fluo-4 and Fluo-5F mainly reported stable [Ca2+]i elevations, whereas the proteins R-GECO1 and GCaMP5G more often reported distinct [Ca2+]i spikes from an elevated level. [Ca2+]i spiking occurred also in glucose-stimulated cells. The spikes reflected Ca2+ release from the endoplasmic reticulum, triggered by autocrine activation of purinergic receptors after exocytotic release of ATP and/or ADP, and the spikes were consequently prevented by SERCA inhibition or P2Y1-receptor antagonism. Widefield imaging, which monitors the entire cytoplasm, increased the spike detection by the Ca2+ dyes. The indicator-dependent response patterns were unrelated to Ca2+ binding affinity, buffering and mobility, and probably reflects the much slower dissociation kinetics of protein compared to dye indicators. Ca2+ dyes thus report signalling within the submembrane space excited by TIRF illumination, whereas the protein indicators also catch Ca2+ events originating outside this volume. The study highlights that voltage-dependent Ca2+ entry in ß-cells is tightly linked to local intracellular Ca2+ release mediated via an autocrine route that may be more important than previously reported direct Ca2+ effects on phospholipase C or on intracellular channels mediating calcium-induced calcium release.


Asunto(s)
Calcio , Células Secretoras de Insulina , Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Retículo Endoplásmico/metabolismo , Colorantes/metabolismo , Colorantes/farmacología , Señalización del Calcio , Adenosina Trifosfato/metabolismo
11.
Front Cell Dev Biol ; 11: 1202573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346175

RESUMEN

BALB/c and C57BL/6 mouse strains are widely used as animal model in studies of respiratory diseases, such as asthma. Asthma is characterized by airway hyperresponsiveness, which is eventually resulted from the excessive airway smooth muscle (ASM) contraction mediated by Ca2+ oscillations in ASM cells. It is reported that BALB/c mice have inherently higher airway responsiveness, but show no different contractive response of tracheal ring as compared to C57BL/6 mice. However, whether the different airway responsiveness is due to the different extents of small airway contraction, and what's underlying mechanism remains unknown. Here, we assess agonist-induced small airway contraction and Ca2+ oscillations in ASM cells between BALB/c and C57BL/6 mice by using precision-cut lung slices (PCLS). We found that BALB/c mice showed an intrinsically stronger extent of small airway narrowing and faster Ca2+ oscillations in ASM cells in response to agonists. These differences were associated with a higher magnitude of Ca2+ influx via store-operated Ca2+ entry (SOCE), as a result of increased expression of SOCE components (STIM1, Orai1) in the ASM cells of small airway of BALB/c mice. An established mathematical model and experimental results suggested that the increased SOC current could result in increased agonist-induced Ca2+ oscillations. Therefore, the inherently higher SOC underlies the increased Ca2+ oscillation frequency in ASM cells and stronger small airway contraction in BALB/c mice, thus higher airway responsiveness in BALB/c than C57BL/6 mouse strain.

12.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L259-L270, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692168

RESUMEN

Severe levels of acidosis (pH < 6.8) have been shown to cause a sustained rise in cytosolic Ca2+ concentration in carotid body Type 1 (glomus) cells. To understand how physiologically relevant levels of acidosis regulate Ca2+ signaling in glomus cells, we studied the effects of small changes in extracellular pH (pHo) on the kinetics of Ca2+ oscillations. A decrease in pHo from 7.4 to 7.3 (designated mild) and 7.2 (designated moderate) acidosis produced significant increases in the frequency and amplitude of Ca2+ oscillations. These effects of acidosis on Ca2+ oscillations were not blocked by NS383 and amiloride [acid-sensing ion channel (ASIC) inhibitors]. Mild and moderate levels of acidosis, however, caused a small but significant inhibition of two-pore domain acid-sensing K+ channels (TASK) (TASK-1- and TASK-3-like channels) and depolarized the cell by 6-13 mV. Acidosis-induced increase in Ca2+ oscillations was inhibited by nifedipine (1 µM; L-type Cav inhibitor) and by TTA-P2 (20 µM; T-type Cav inhibitor). Mild inhibition of TASK activity by N-[(2,4-difluorophenyl)methyl]-2'-[[[2-(4methoxyphenyl)acetyl]amino]methyl][1,1'-biphenyl]-2-carboxamide (A1899) (0.3 µM) and 1-[1-[6-[[1,1'-biphenyl]-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-4-yl]-4-piperidinyl]-1-butanon (PK-THPP) (0.1 µM) increased Ca2+ oscillation frequency to levels similar to those observed with mild-moderate acidosis. Mild acidosis (pHo 7.3) and mild hypoxia (∼5%O2) produced similar levels of changes in the kinetics of Ca2+ oscillations. Block of tetraethylammonium (TEA)-sensitive Kv channels did not affect acid-induced increase in Ca2+ oscillations. Our study shows that mild and moderate levels of acidosis increase the frequency and amplitude of Ca2+ oscillations primarily by inhibition of TASK without involving ASICs, and suggests a major role of TASK for signal transduction in response to a physiological change in pHo.


Asunto(s)
Acidosis , Cuerpo Carotídeo , Ratas , Animales , Células Quimiorreceptoras , Ácidos , Concentración de Iones de Hidrógeno , Calcio
13.
Front Cell Dev Biol ; 10: 991659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120576

RESUMEN

Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.

14.
Life Sci ; 308: 120913, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037871

RESUMEN

AIMS: Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS: Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS: Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE: Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.


Asunto(s)
Células Epiteliales Alveolares , Diabetes Mellitus Tipo 2 , Células A549 , Adenosina Trifosfato/metabolismo , Células Epiteliales Alveolares/metabolismo , Aminoquinolinas , Benzamidas , Calcio/metabolismo , Señalización del Calcio/fisiología , Colorantes Fluorescentes , Fura-2/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Inositol 1,4,5-Trifosfato/farmacología , Ocratoxinas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tensoactivos
15.
Biomedicines ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35625762

RESUMEN

Neuronal-glial cell cultures are usually grown attached to or encapsulated in an adhesive environment as evenly distributed networks lacking tissue-like cell density, organization and morphology. In such cultures, microglia have activated amoeboid morphology and do not display extended and intensively branched processes characteristic of the ramified tissue microglia. We have recently described self-assembling functional cerebellar organoids promoted by hydrogels containing collagen-like peptides (CLPs) conjugated to a polyethylene glycol (PEG) core. Spontaneous neuronal activity was accompanied by changes in the microglial morphology and behavior, suggesting the cells might play an essential role in forming the functional neuronal networks in response to the peptide signalling. The present study examines microglial cell morphology and function in cerebellar cell organoid cultures on CLP-PEG hydrogels and compares them to the cultures on crosslinked collagen hydrogels of similar elastomechanical properties. Material characterization suggested more expressed fibril orientation and denser packaging in crosslinked collagen than CLP-PEG. However, CLP-PEG promoted a significantly higher microglial motility (determined by time-lapse imaging) accompanied by highly diverse morphology including the ramified (brightfield and confocal microscopy), more active Ca2+ signalling (intracellular Ca2+ fluorescence recordings), and moderate inflammatory cytokine level (ELISA). On the contrary, on the collagen hydrogels, microglial cells were significantly less active and mostly round-shaped. In addition, the latter hydrogels did not support the neuron synaptic activity. Our findings indicate that the synthetic CLP-PEG hydrogels ensure more tissue-like microglial morphology, motility, and function than the crosslinked collagen substrates.

16.
Front Physiol ; 12: 744745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803733

RESUMEN

Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.

17.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360859

RESUMEN

The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.


Asunto(s)
Adipocitos Blancos/metabolismo , Calcio/metabolismo , Conexina 43/fisiología , Lipogénesis , Lipólisis , Adipocitos Blancos/citología , Animales , Señalización del Calcio , Células Cultivadas , Ratones
18.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201461

RESUMEN

Cholinergic innervation in the pancreas controls both the release of digestive enzymes to support the intestinal digestion and absorption, as well as insulin release to promote nutrient use in the cells of the body. The effects of muscarinic receptor stimulation are described in detail for endocrine beta cells and exocrine acinar cells separately. Here we describe morphological and functional criteria to separate these two cell types in situ in tissue slices and simultaneously measure their response to ACh stimulation on cytosolic Ca2+ oscillations [Ca2+]c in stimulatory glucose conditions. Our results show that both cell types respond to glucose directly in the concentration range compatible with the glucose transporters they express. The physiological ACh concentration increases the frequency of glucose stimulated [Ca2+]c oscillations in both cell types and synchronizes [Ca2+]c oscillations in acinar cells. The supraphysiological ACh concentration further increases the oscillation frequency on the level of individual beta cells, inhibits the synchronization between these cells, and abolishes oscillatory activity in acinar cells. We discuss possible mechanisms leading to the observed phenomena.


Asunto(s)
Acetilcolina/farmacología , Células Acinares/metabolismo , Señalización del Calcio , Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citosol/efectos de los fármacos , Femenino , Glucosa/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores Muscarínicos/metabolismo , Factores de Tiempo
19.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065973

RESUMEN

Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca2+-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP3-receptors (PLC/IP3R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)-dependent Ca2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors' interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca2+]i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP3R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5-15% vs. 30-80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca2+-signaling systems deregulation, and development of general hormonal resistance to obesity.


Asunto(s)
Adipocitos Blancos/metabolismo , Señalización del Calcio , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Tamaño de la Célula , Células Cultivadas , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Epidídimo , Proteínas de Unión al GTP/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/inducido químicamente , Palmitoilcarnitina/farmacología , Periodicidad , Cultivo Primario de Células , Fosfolipasas de Tipo C/metabolismo
20.
Mar Drugs ; 19(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069724

RESUMEN

Three new p-terphenyl derivatives, named 4″-O-methyl-prenylterphenyllin B (1) and phenylcandilide A and B (17 and 18), and three new indole-diterpene alkaloids, asperindoles E-G (22-24), were isolated together with eighteen known analogues from the fungi Aspergillus candidus associated with the South China Sea gorgonian Junceela fragillis. The structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic analysis, and DFT/NMR and TDDFT/ECD calculations. In a primary cultured cortical neuronal network, the compounds 6, 9, 14, 17, 18 and 24 modulated spontaneous Ca2+ oscillations and 4-aminopyridine hyperexcited neuronal activity. A preliminary structure-activity relationship was discussed.


Asunto(s)
Antozoos/parasitología , Aspergillus/química , Diterpenos/farmacología , Alcaloides Indólicos/farmacología , Neuronas/efectos de los fármacos , Compuestos de Terfenilo/farmacología , Animales , Antozoos/microbiología , Organismos Acuáticos/química , Señalización del Calcio , Diterpenos/química , Diterpenos/aislamiento & purificación , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Océanos y Mares , Cultivo Primario de Células , Relación Estructura-Actividad , Compuestos de Terfenilo/química , Compuestos de Terfenilo/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA