Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Toxicol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105312

RESUMEN

Aluminum oxide nanoparticles (Al2O3 NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform (Cur NPs) against Al2O3 NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al2O3 NPs; G4, (Cur NPs + Al2O3 NPs) received Cur NPs and Al2O3 NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al2O3 NPs + Cur NPs) received Al2O3 NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al2O3 NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al2O3 NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al2O3 NPs + Cur NPs than Cur NPs + Al2O3 NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al2O3 NPs in male albino rats.

2.
Cell Physiol Biochem ; 58(4): 382-392, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137299

RESUMEN

BACKGROUND/AIMS: The naturally occurring phenolic chemical curcumin (CUR), which was derived from the Curcuma longa plant, has a variety of biological actions, including anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Curcumin is known for its restricted bioavailability due to its hydrophobicity, poor intestinal absorption, and quick metabolism. To boost the biological effects of these bioactive molecules, it is necessary to raise both their bioavailability and their solubility in water. Aim: The aim of this study is to synthesize and characterize hybrid organic-inorganic complexes of copper and cobalt, and to evaluate their antimicrobial potential against a range of pathogenic microorganisms. METHODS: The synthesis of metal curcumin complexes (Cu-CUR and Co-CUR) was achieved by mixing curcumin with copper acetate monohydrate. The solid residue was isolated, filtered, and dried in an oven. X-ray diffraction analysis was used to identify the structure and phase of the prepared samples. FTIR spectra were recorded using a Shimadzu 2200 module. The antimicrobial activity of the prepared complexes was evaluated against four bacterial strains and two Candida species. The chemical materials were dissolved in DMSO to a final concentration of 20%, and the plates were incubated at 37°C for 24 hours. The results showed that the prepared complexes had antimicrobial activity against the tested microorganisms. RESULTS: The study compared the Powder X-ray diffraction (XRD) patterns of prepared copper and cobalt complexes to pure curcumin, revealing new, isostructural complexes. The FTIR analysis showed that the Cu-CUR and Co-CUR complexes varied in their inhibitory effect against microorganisms, with Co-CUR being more effective. The results are consistent with previous studies showing the cobalt-curcumin complex was effective against various bacterial genera, with inhibition activity varying depending on the species and strains of microorganisms. CONCLUSION: Copper and cobalt curcumin complexes, synthesized at room temperature, exhibit high crystallinity and antimicrobial activity. Co-CUR, with its superior antibacterial potential, outperforms pure curcumin in inhibiting microbes. Further investigation is needed to understand their interaction mechanisms with bacteria and fungi.


Asunto(s)
Antiinfecciosos , Cobalto , Complejos de Coordinación , Cobre , Curcumina , Pruebas de Sensibilidad Microbiana , Cobalto/química , Cobalto/farmacología , Cobre/química , Cobre/farmacología , Curcumina/farmacología , Curcumina/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Candida/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
3.
J Colloid Interface Sci ; 677(Pt B): 523-540, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39154445

RESUMEN

Co-delivering multiple drugs or circumventing the drug efflux mechanism can significantly decrease multidrug resistance (MDR), a major cause of cancer treatment failure. In this study, we designed and fabricated a universal "three-in-one" self-delivery system for synergistic cancer therapy using a computer-aided strategy. First, we engineered two glutathione (GSH)-responsive heterodimers, ERL-SS-CPT (erlotinib [ERL] linked with camptothecin [CPT] via a disulfide bond [SS]) and CPT-SS-ERI (CPT conjugated with erianin [ERI]), which serve as both cargo and carrier material. Next, molecular dynamics simulations indicated that multiple noncovalent molecular forces, including π-π stacking, hydrogen bonds, hydrophobic interactions, and sulfur bonds, drive the self-assembly process of these heterodimers. We then explored the universality of the heterodimers and developed a "triadic" drug delivery platform comprising 40 variants. Subsequently, we conducted case studies on docetaxel (DTX)-loaded ERL-SS-CPT nanoparticles (denoted as DTX@ERL-SS-CPT NPs) and curcumin (CUR)-loaded ERL-SS-CPT NPs (identified as CUR@CPT-SS-ERI NPs) to comprehensively investigate their self-assembly mechanism, physicochemical properties, storage stability, GSH-responsive drug release, cellular uptake, apoptosis effects, biocompatibility, and cytotoxicity. Both NPs exhibited well-defined spherical structures, high drug loading rates, and excellent storage stability. DTX@ERL-SS-CPT NPs exhibited the strongest cytotoxicity in A549 cells, following the order of DTX@ERL-SS-CPT NPs > ERL-SS-CPT NPs > CPT > DTX > ERL. Conversely, DTX@ERL-SS-CPT NPs showed negligible cytotoxicity in normal human bronchial epithelium cell line (BEAS-2B), indicating good biocompatibility and safety. Similar observations were made for CUR@CPT-SS-ERI NPs regarding biocompatibility and cytotoxicity. Upon endocytosis and encountering intracellular overexpressed GSH, the disulfide-bond linker is cleaved, resulting in the release of the versatile NPs into three parts. The spherical NPs enhance water solubility, reduce the required dosage of free drugs, and increase cellular drug accumulation while suppressing P-glycoprotein (P-gp) expression, leading to apoptosis. This work provides a computer-aided universal strategy-a heterodimer-based "triadic" drug delivery platform-to enhance anticancer efficiency while reducing multidrug resistance.

4.
J Nanobiotechnology ; 22(1): 420, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014462

RESUMEN

Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.


Asunto(s)
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenósidos , Animales , Curcumina/farmacología , Curcumina/química , Ginsenósidos/química , Ginsenósidos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Antígeno B7-H1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Micelas , Ratones Endogámicos BALB C , Polímeros/química , Polímeros/farmacología , Células Dendríticas/efectos de los fármacos , Nanopartículas/química , Células Madre Neoplásicas/efectos de los fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacología
5.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062820

RESUMEN

Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer treatment with a staggering number of molecular targets involved in tumor initiation, promotion, and progression. Despite being promising, its therapeutic potential is hindered due to its hydrophobic nature. Hence, the ongoing development of optimal delivery strategies based on nanotechnology, such as polymeric micelles (PMs), to overcome issues in CUR solubilization and delivery to tumor cells. In this sense, this study aimed to optimize the development and stability of CUR-loaded P123:F127:TPGS PMs (PFT:CUR) based on the thin-film approach and evaluate their therapeutic potential in CRC. Overall, the results revealed that the solubility of CUR was improved when room temperature was used to hydrate the film. The PFT-CUR hydrated at room temperature presents an average hydrodynamic diameter of 15.9 ± 0.3 nm with a polydispersity index (PDI) of 0.251 ± 0.103 and a zeta potential of -1.5 ± 1.9 mV, and a 35.083 ± 1.144 encapsulation efficiency (EE%) and 3.217 ± 0.091 drug loading (DL%) were observed. To ensure the stability of the optimized PFT-CUR nanosystems, different lyophilization protocols were tested, the use of 1% of glycine (GLY) being the most promising protocol. Regarding the critical micellar concentration (CMC), it was shown that the cryoprotectant and the lyophilization process could impact it, with an increase from 0.064 mg/mL to 0.119 mg/mL. In vitro results showed greater cytotoxic effects when CUR was encapsulated compared to its free form, yet further analysis revealed the heightened cytotoxicity could be attributed to the system itself. Despite challenges, the developed CUR-loaded PM shows potential as an effective therapeutic agent for CRC. Nonetheless, the system must undergo refinements to enhance drug entrapment as well as improve overall stability.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Micelas , Vitamina E , Curcumina/química , Curcumina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Humanos , Vitamina E/química , Portadores de Fármacos/química , Poloxaleno/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Solubilidad , Polímeros/química , Liberación de Fármacos
6.
Transl Cancer Res ; 13(6): 2596-2604, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988906

RESUMEN

Background: Curcumin (Cur) is a natural phytochemical that is expected to become an indispensable drug for the treatment of colorectal cancer. A comprehensive understanding of the anti-tumor mechanism of Cur will provide a better reference for its clinical application. This study aimed to examine the effects of extracellular vesicles (EVs) isolated from Cur-medium on RKO colorectal cancer cell proliferation, apoptosis, and migration. Methods: RKO cells were cultured in various concentrations of Cur-medium, and the EVs were isolated from the Cur-medium. The EVs were identified by transmission electron microscopy and western blotting. The effects of the EVs on RKO cell proliferation, apoptosis, and migration were analyzed, as was the expression of proliferating cell nuclear antigen (PCNA), Bax, vimentin, and E-cadherin. The expression of nuclear factor κB (NF-κB) p65 in the EVs was also detected. Results: Our results showed that the EVs isolated from the Cur-medium weakened RKO cell proliferation and migration but had no effect on cell apoptosis. Cur suppressed the expression of NF-κB p65 in the EVs. Overall, this study revealed that Cur exerts anti-tumor effects by suppressing NF-κB p65 in EVs to weaken RKO cell proliferation and migration. Conclusions: In conclusion, the packaging of Cur into EVs is expected to become an indispensable treatment of colorectal cancer in the future.

7.
J Steroid Biochem Mol Biol ; 243: 106579, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032671

RESUMEN

Chronic stress refers to the activation of the hypothalamic-pituitary-adrenal (HPA) axis and elevated blood contents of ACTH and corticosterone (CORT), exhibiting significant adverse effects on health outcomes. Currently, natural polyphenol compounds are increasingly being explored as potential therapeutic agents and have been considered as a treatment option for a variety of stress-induced diseases. Curcumin (CUR) is the main substance in Curcuma longa (Zingiberacea) rhizome that has strong health-beneficial properties. The study aimed to assess the potential protective effects of CUR on hepatic oxidative stress damage and abnormal lipid deposition in a chronic CORT-induced stress (CCIS) model in broilers. One hundred and twenty experimental broilers were randomly divided into 1) control group (CON), 2) CUR group (200 mg/kg feed), 3) CORT group (4 mg/kg BW CORT) and 4) CORT+CUR group (200 mg/kg feed plus 4 mg/kg BW CORT). The liver histology, glycolipid metabolism and oxidative stress were determined. In addition, qPCR was performed to identify shifts in genes expression. Compared with CON group, broilers under CCIS showed a decreased body weight, body weight gain and average daily gain, while dietary CUR significantly reversed these adverse effects. Furthermore, the plasma contents of TCH, TG, HDL-C, LDL-C, TP, GLB and AST were all significantly increased in CCIS broilers, while dietary CUR obviously alleviated the increase of TCH, HDL-C, LDL-C and AST, and relieved the hepatic lipid deposition disorder and liver injury. Moreover, CCIS significantly increased the contents of MDA in both liver and plasma, and decreased the content of plasma SOD, while CUR obviously reversed these changes, showing reduced oxidative stress damage. Finally, the mRNA expressions of FAS, ACC, SCD and the protein level of PPAR-γ were significantly increased, meanwhile the mRNA expression of lipolytic genes ACOX1, ATGL and CPT as well as two major intracellular antioxidant enzymes SOD1 and GPX1 were obviously decreased, while CUR effectively reversed these effects. These results showed that dietary CUR effectively alleviated CCIS-induced body weight loss, hepatic oxidative damage and lipid deposition disorder, suggesting the possible therapeutic effectiveness of CUR against hepatic damage and function abnormality caused by CCIS.


Asunto(s)
Pollos , Corticosterona , Curcumina , Suplementos Dietéticos , Hígado , Estrés Oxidativo , Animales , Curcumina/farmacología , Corticosterona/sangre , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Fisiológico/efectos de los fármacos , Masculino
8.
Mater Today Bio ; 26: 101090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800564

RESUMEN

Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.

9.
Phytomedicine ; 129: 155635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701541

RESUMEN

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS: To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS: Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION: This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.


Asunto(s)
Curcumina , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Microglía , Fármacos Neuroprotectores , Mucosa Olfatoria , Daño por Reperfusión , Curcumina/farmacología , Animales , Daño por Reperfusión/tratamiento farmacológico , Microglía/efectos de los fármacos , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/farmacología , Mucosa Olfatoria/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuronas/efectos de los fármacos , Necroptosis/efectos de los fármacos , Modelos Animales de Enfermedad
10.
Mater Today Bio ; 26: 101075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736614

RESUMEN

Regenerating skin nerves in deep burn wounds poses a significant clinical challenge. In this study, we designed an electrospun wound dressing called CuCS/Cur, which incorporates copper-doped calcium silicate (CuCS) and curcumin (Cur). The unique wound dressing releases a bioactive Cu2+-Cur chelate that plays a crucial role in addressing this challenge. By rebuilding the "factory" (hair follicle) responsible for producing nerve cells, CuCS/Cur induces a high expression of nerve-related factors within the hair follicle cells and promotes an abundant source of nerves for burn wounds. Moreover, the Cu2+-Cur chelate activates the differentiation of nerve cells into a mature nerve cell network, thereby efficiently promoting the reconstruction of the neural network in burn wounds. Additionally, the Cu2+-Cur chelate significantly stimulates angiogenesis in the burn area, ensuring ample nutrients for burn wound repair, hair follicle regeneration, and nerve regeneration. This study confirms the crucial role of chelation synergy between bioactive ions and flavonoids in promoting the regeneration of neuralized skin through wound dressings, providing valuable insights for the development of new biomaterials aimed at enhancing neural repair.

11.
Transl Androl Urol ; 13(3): 397-405, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38590962

RESUMEN

Background: Chronic urinary retention (CUR) resulting from lower motor neuron lesions (LMNL) is a medical condition secondary to pelvic or lumbosacral tumor resection surgeries. Electroacupuncture (EA) is proved to be effective and safe in treating certain lower urinary tract disorders. However, the clinical benefit and optimal duration of EA treatment for CUR following LMNL remain unknown. Methods: Using a retrospective cohort design, 20 eligible patients diagnosed with CUR resulting from LMNL secondary to pelvic or lumbosacral tumor resection surgeries were included from March 1, 2017, to June 30, 2020. The patients were treated by EA three times a week for 2 to 12 weeks and followed up for 24 weeks after treatment. The electric stimulators with a 5-Hz continuous wave (5-10 mA intensity) were separately connected to bilateral Ciliao (BL32), bilateral Zhongliao (BL33), and bilateral Huiyang (BL35), and stimulators with a 10-Hz continuous wave (1-2 mA intensity) were connected to bilateral Sanyinjiao (SP6). Current intensity was adjusted according to the patients' individual tolerance. The median follow-up was 32 weeks (range, 26-36 weeks). Responders were defined as patients whose post-void residuals (PVR) reduced by 50% or more from baseline. Adverse event was recorded. Results: Totally 20 patients [mean (standard deviation) age, 48.1 (15.5) years; 9 men (45.0%); 11 women (55.0%)] were included. Of the 20 patients, 14 (70.0%) had responded to EA treatment and stopped catheterization for achieving satisfactory spontaneous urination (PVR <100 mL without complications), 7 (35.0%) had complete resolution (90-100% reduction in PVR from baseline), and 13 (65.0%) scored 1 (much better) or 2 (moderately better) in the Patient Global Impression of Improvement (PGI-I) assessment. Moreover, 6 (30.0%) patients had responded within 4 weeks of EA treatment. According to Kaplan-Meier survival curve, we found that more than 50% patients could respond to EA treatment within 8 weeks or longer. None of the responders had ever experienced relapse in 24 weeks after EA treatment ended. None of the patients manifested urinary tract infection (UTI), newly diagnosed hydroureter or hydronephrosis. One patient diagnosed with hydronephrosis at baseline recovered after 12-week EA treatment. Two patients with UTI at baseline were prescribed antibiotics and did not present UTI again during the follow-up. Conclusions: EA could be a promising treatment option for CUR caused by LMNL following pelvic or lumbosacral tumor resection surgeries, with long-term effects and a good safety profile. The optimal duration of EA should be of 8 weeks at least. But this was a retrospective cohort study of a small sample size, so future studies are needed to investigate EA in larger populations in randomized controlled trials.

12.
Int J Biol Macromol ; 263(Pt 2): 130372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395275

RESUMEN

The present study reports the synthesis of micellar conjugates, wherein curcumin (Cur), a bioactive compound with poor bioavailability, was covalently bonded to a bacterial exopolysaccharide (EPS). These conjugates were synthesized by utilizing succinic acid that linked Cur to the pyranosyl moiety of the EPS. The Cur-EPS conjugates appeared as spherical micelles in aqueous solution and were found to have an average hydrodynamic diameter of 254 ± 2.7 nm. The micellar conjugates showed superior stability than Cur as evident from their negative surface charge (-27 ± 1.8 mV) and low polydispersity index (PDI) (0.33 ± 0.04). The in vitro studies on release kinetics helped elucidate the pH-responsive characteristics of the Cur-EPS conjugate, as 87.50 ± 1.45 % of Cur was released at an acidic pH of 5.6, in contrast to 30.15 ± 2.61 % at systemic pH of 7.4 at 150 h. The conjugates were hemocompatible and exhibited cytotoxic effect against the osteosarcoma cell line (MG-63) after 48 h treatment. They also demonstrated superior antibacterial, antibiofilm, and antioxidant activities in comparison to free Cur. Therefore, the Cur-EPS conjugates have potential pharmaceutical applications as therapeutic biomaterial that can be applied as a drug delivery system.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Curcumina , Humanos , Curcumina/química , Micelas , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Neoplasias Óseas/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química
13.
ACS Appl Mater Interfaces ; 16(8): 9749-9767, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359334

RESUMEN

The treatment of diabetic chronic wounds is still faced with great challenges, mainly due to wound infection, excessive inflammation, and peripheral vascular disease in the wound area. Therefore, it is of great importance to develop a novel multifunctional hydrogel with high efficiency to accelerate diabetic wound healing. Curcumin (Cur), a Chinese herbal, has shown great potential in enhancing the healing of diabetic chronic wounds because of its immunomodulatory and pro-angiogenic properties. However, its low aqueous solubility, poor bioavailability, and chemical instability have limited its clinical applications. To address these current bottlenecks, novel poly(vinyl alcohol) (PVA)-chitosan (CS)/sodium alginate (SA)-Cur (PCSA) hydrogels were prepared for the first time, and they demonstrated all of the above intriguing performances by the Michael addition reaction of CS and Cur. PCSA hydrogels show multiple dynamic bonds, which possess strong mechanical properties (tensile stress: ∼0.980 MPa; toughness: ∼258.45 kJ/m3; and compressive strength: ∼7.38 MPa at strain of 80%). These intriguing performances provided an optimal microenvironment for cell migration and proliferation and also promoted the growth of blood vessels, leading to early angiogenesis. Importantly, the experimental results demonstrated that PCSA hydrogels can effectively transform pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages without the need for additional ingredients in vitro. Benefiting from these characteristics, a full-thickness diabetic wound in a rat model demonstrated that PCSA hydrogels can effectively accelerate wound healing via ROS-scavenging, downregulation of IL-1ß, and upregulation of CD31 expression, resulting in angiogenesis and collagen deposition. This strategy not only provides a simple and safe Cur-based hydrogel for diabetic wound healing but also highlights the significant potential for the development of high-performance biomaterials for promoting diabetic wound healing using traditional Chinese medicine.


Asunto(s)
Antiinfecciosos , Quitosano , Curcumina , Diabetes Mellitus , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Curcumina/química , Antioxidantes/farmacología , Angiogénesis , Cicatrización de Heridas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinfecciosos/farmacología , Quitosano/farmacología , Antibacterianos/química
14.
Iran J Basic Med Sci ; 27(1): 81-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164480

RESUMEN

Objectives: The current study aims to investigate the protective effect of iron oxide nanoparticles capped with curcumin (FeONPs-Cur) against motor impairment and neurochemical changes in a rat model of Parkinson's disease (PD) induced by reserpine. Materials and Methods: Rats were grouped into control, PD model induced by reserpine, and PD model treated with FeONPs-Cur (8 rats/group). The open field test was used to assess motor activity. The concentration of dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation (MDA), reduced glutathione (GSH), and nitric oxide (NO), and the activities of Na+,K+,ATPase, acetylcholinesterase (AchE), and monoamine oxidase (MAO) were determined in the midbrain and striatum. Data were analyzed by ANOVA at P-value<0.05. Results: The PD model exhibited a decrease in motor activity. In the midbrain and striatum of the PD model, DA, NE, and 5-HT levels decreased significantly (P-value<0.05). However, an increase in MAO, NO, and MDA was observed. GSH, AchE and Na+,K+,ATPase decreased significantly in the two brain areas. FeONPs-Cur prevented the decline of dopamine and norepinephrine and reduced oxidative stress in both areas. It also prevented the increased MAO activity in the two areas and the inhibited activity of AchE and Na+,K+,ATPase in the midbrain. These changes were associated with improvements in motor activity. Conclusion: The present data indicate that FeONPs-Cur could prevent the motor deficits induced in the PD rat model by restoring dopamine and norepinephrine in the midbrain and striatum. The antioxidant activity of FeONPs-Cur contributed to its protective effect. These effects nominate FeONPs-Cur as an antiparkinsonian candidate.

15.
Antioxidants (Basel) ; 13(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38247515

RESUMEN

Diesel particulate matter is one of the most dangerous environmental stressors affecting human health. Many plant-derived compounds with antioxidant and anti-inflammatory properties have been proposed to protect the skin from pollution damage. Curcumin (CUR) has a plethora of pharmacological activities, including anticancer, antimicrobial, anti-inflammatory and antioxidant. However, it has low bioavailability due to its difficult absorption and rapid metabolism and elimination. CUR encapsulation in nanotechnological systems and its combination with biopotentiators such as piperine (PIP) can improve its pharmacokinetics, stability and activity. In this study, ethosomes (ETs) were investigated for CUR and PIP delivery to protect the skin from damage induced by diesel particulate matter. ETs were produced by different strategies and characterized for their size distribution by photon correlation spectroscopy, for their morphology by transmission electron microscopy, and for their drug encapsulation efficiency by high-performance liquid chromatography. Franz cells enabled us to evaluate in vitro the drug diffusion from ETs. The results highlighted that ETs can promote the skin permeation of curcumin. The studies carried out on their antioxidant activity demonstrated an increase in the antioxidant power of CUR using a combination of CUR and PIP separately loaded in ETs, suggesting their possible application for the prevention of skin damage due to exogenous stressors. Ex vivo studies on human skin explants have shown the suitability of drug-loaded ETs to prevent the structural damage to the skin induced by diesel engine exhaust exposure.

16.
Environ Toxicol ; 39(4): 2032-2042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095090

RESUMEN

Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.


Asunto(s)
Compuestos de Bifenilo , Curcumina , Humanos , Curcumina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacología , Apoptosis , Plastificantes , Autofagia
17.
Antiviral Res ; 218: 105713, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657668

RESUMEN

Over the years, the hand, foot and mouth disease (HFMD) has sparked epidemics across many countries which mainly affected young children. While symptoms are usually mild, severe complications may arise, and some even lead to death. Such concerns, coupled with the lack of approved vaccines and antivirals to date, create an urgency in the identification of safe therapeutics against HFMD. The disease is mainly transmitted by enteroviruses like enterovirus A71 (EV-A71). Essential for enterovirus replication is the host protein, PI4KB. In this study, we investigate the antiviral efficacy of a novel PI4KB inhibitor, CUR-N399. We found that CUR-N399 displayed broad-spectrum antiviral activity against picornaviruses in cell culture models. Using a suckling mouse model of lethal EV-A71 infection, CUR-N399 was found to be well-tolerated, promote survival and reduce viral titre in mice organs. Together, these support the discovery of CUR-N399 as an antiviral against EV-A71 and potentially other closely related viruses.

18.
Int J Biol Macromol ; 250: 126255, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567539

RESUMEN

In this study, curcumin@high-pressure homogenization-soybean 7S protein/nanoparticles (CUR@HPH-7S-NPs) were prepared by an anti-solvent method. The physicochemical properties results showed at a CUR concentration of 4 mg/mL, CUR@HPH-7S-NPs had better size, encapsulation efficiency (EE), and zeta-potential values of 151.9 nm, 88.80 %, and -23.1 mV, respectively. Fourier transforms infrared (FTIR) and endogenous fluorescence spectroscopy results indicated CUR bound to HPH-7S through hydrophobic interactions, and the force between HPH-7S and CUR molecules was greater than that between untreated 7S protein and CUR. Furthermore, the pH stability results showed the size of CUR@HPH-7S-NPs was barely affected by pH away from adjacent area of the isoelectric point of 7S protein. The physical thermal stability and bio-accessibility results suggested that HPH-7S was more effective in delaying the degradation, had more physical thermal stability, and had a significant improvement in the bio-accessibility of CUR than that of untreated 7S protein. What's more, the antioxidant activity results showed at a CUR equivalent concentration of 40 µg/mL, the DPPH and ABTS radical scavenging activity of CUR@HPH-7S-NPs was 85.10 % and 96.64 %, respectively, both of which were significantly higher than that of free CUR. Finally, this study aimed to provide a theoretical basis for the delivery of other hydrophobic bioactive substances.


Asunto(s)
Antineoplásicos , Curcumina , Nanopartículas , Curcumina/química , Glycine max/metabolismo , Proteínas de Soja , Nanopartículas/química , Tamaño de la Partícula
19.
MethodsX ; 10: 102229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292239

RESUMEN

Carrier-mediated drug delivery systems are highly promising as a treatment option for the targeted delivery of potent cytotoxic drugs with increased efficacy and safety. Considering that poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) polymers each provide certain advantages for biological purposes, PEGylated-PLGA nanoparticles have emerged as a leading candidate among other alternatives. Furthermore, these nanoparticles can be modified with the specific short peptide sequences such as glycine-arginine-glycine-aspartic acid­serine (GRGDS), which selectively binds to integrins overexpressed in most cancer cells, allowing for targeted delivery. Here, we reported the details in fabrication and characterization of magnetic PEGylated-PLGA nanoparticles functionalized with GRGDS peptide. In addition, superparamagnetic iron oxide nanoparticles (SPIONs) and the natural pharmaceutical compound curcumin (Cur) were loaded into these polymeric nanoparticles to assess their anticancer activity potential. Overall, this study provides comprehensive methodologies, including all synthesis procedures, challenges, and useful suggestions for peptide-conjugated polymeric nanoparticles that may be used for cellular targeting and therapeutic applications.•Step by step fabrication protocol for the Cur loaded magnetic PEGylated-PLGA nanoparticles was presented.•Validation of the fabrication and the GRGDS conjugation to the nanoparticles were shown via detailed characterization studies.•The cytotoxic effect of the Cur-loaded and GRGDS-tagged magnetic nanoparticles was tested on T98G glioblastoma cell line as a preliminary in vitro study.

20.
ACS Appl Mater Interfaces ; 15(22): 26496-26509, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219485

RESUMEN

Curcumin (CUR) is one natural bioactive compound acknowledged for diverse therapeutic activities, but its use is hindered by its poor bioavailability, fast metabolism, and susceptibility to pH variations and light exposure. Thus, the encapsulation in poly(lactic-co-glycolic acid), or PLGA, has been successfully used to protect and enhance CUR absorption in the organism, making CUR-loaded PLGA nanoparticles (NPs) promising drug delivery systems. However, few studies have focused beyond CUR bioavailability, on the environmental variables involved in the encapsulation process, and whether they could help obtain NPs of superior performance. Our study evaluated pH (3.0 or 7.0), temperature (15 or 35 °C), light exposure, and inert atmosphere (N2) incidence in the encapsulation of CUR. The best outcome was at pH 3.0, 15 °C, without light incidence, and without N2 usage. This best nanoformulation showed NP size, zeta potential, and encapsulation efficiency (EE) of 297 nm, -21 mV, and 72%, respectively. Moreover, the CUR in vitro release at pH values 5.5 and 7.4 suggested different potential applications for these NPs, one of which was demonstrated by the effective inhibition of multiple bacteria (i.e., Gram-negative, Gram-positive, and multi-resistant) in the minimal inhibition concentration assay. Besides, statistical analyses confirmed a significant impact of temperature on the NP size; in addition, temperature, light, and N2 affected the EE of CUR. Thus, the selection and control of process variables resulted in higher CUR encapsulation and customizable outcomes, ultimately enabling more economical processes and providing future scale-up guidelines.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/farmacología , Curcumina/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA