RESUMEN
It has been proposed that the phenotypic differences in cognitive abilities between humans and our closest living relatives, chimpanzees, are largely due to changes in the regulation of neurodevelopmental genes. We have previously found that the neurodevelopmental transcription factor gene NPAS3 accumulates the largest number of human accelerated regions (HARs), suggesting it may play some role in the phenotypic evolution of the human nervous system. In this work, we performed a comparative functional analysis of NPAS3-HAR202 using enhancer reporter assays in transgenic zebrafish and mice. We found that the Homo sapiens HAR202 ortholog failed to drive reporter expression to the zebrafish nervous system, in high contrast to the strong expression displayed by the rest of the vertebrate ortholog sequences tested. Remarkably, the HAR202 ortholog from archaic humans (Neanderthals/Denisovans) also displayed a pan-vertebrate expression pattern, despite the fact that archaic and modern humans have only one nucleotide substitution. Moreover, similar results were found when comparing enhancer activity in transgenic mice, where we observed a loss of activity of the modern human version in the mouse developing brain. To investigate the functional importance of HAR202, we generated mice lacking HAR202 and found a remarkable decrease of Npas3 expression in the forebrain during development. Our results place HAR202 as one of the very few examples of a neurodevelopmental transcriptional enhancer displaying functional evolution in the brain as a result of a fast molecular evolutionary process that specifically occurred in the human lineage.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso , Prosencéfalo , Pez Cebra , Animales , Humanos , Prosencéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ratones , Pez Cebra/genética , Evolución Molecular , Ratones Transgénicos , Regulación del Desarrollo de la Expresión GénicaRESUMEN
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology has revolutionized the field of genetic engineering, offering unprecedented potential for the targeted manipulation of DNA sequences. Advances in the mechanism of action of the CRISPR-Cas9 system allowed potential applicability for the treatment of genetic diseases. CRISPR-Cas9's mechanism of action involves the use of an RNA guide molecule to target-specific DNA sequences and the Cas9 enzyme to induce precise DNA cleavage. In the context of the CRISPR-Cas9 system, this review covers nonviral delivery methods for gene editing based on peptide internalization. Here, we describe critical areas of discussion such as immunogenicity, emphasizing the importance of safety, efficiency, and cost-effectiveness, particularly in the context of treating single-mutation genetic diseases using advanced editing techniques genetics as prime editor and base editor. The text discusses the versatility of cell-penetrating peptides (CPPs) in forming complexes for delivering biomolecules, particularly ribonucleoprotein for genome editing with CRISPR-Cas9 in human cells. In addition, it emphasizes the promise of combining CPPs with DNA base editing and prime editing systems. These systems, known for their simplicity and precision, hold great potential for correcting point mutations in human genetic diseases. In summary, the text provides a clear overview of the advantages of using CPPs for genome editing with CRISPR-Cas9, particularly in conjunction with advanced editing systems, highlighting their potential impact on clinical applications in the treatment of single-mutation genetic diseases. [Figure: see text].
Asunto(s)
Sistemas CRISPR-Cas , Péptidos de Penetración Celular , Edición Génica , Enfermedades Genéticas Congénitas , Terapia Genética , Humanos , Edición Génica/métodos , Terapia Genética/métodos , Enfermedades Genéticas Congénitas/terapia , Enfermedades Genéticas Congénitas/genética , Técnicas de Transferencia de Gen , AnimalesRESUMEN
Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.
Asunto(s)
Antibacterianos , Infecciones por Corynebacterium , Corynebacterium , Enfermedades de los Perros , Filogenia , Rifampin , Animales , Corynebacterium/genética , Corynebacterium/efectos de los fármacos , Enfermedades de los Perros/microbiología , Perros , Rifampin/farmacología , Infecciones por Corynebacterium/veterinaria , Infecciones por Corynebacterium/microbiología , Antibacterianos/farmacología , Genoma Bacteriano , Farmacorresistencia Bacteriana/genética , Penicilinas/farmacologíaRESUMEN
Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.
Asunto(s)
Sistemas CRISPR-Cas , Corynebacterium diphtheriae , Rifampin , Factores de Virulencia , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/patogenicidad , Corynebacterium diphtheriae/efectos de los fármacos , Humanos , Factores de Virulencia/genética , Rifampin/farmacología , Mutación , Filogenia , Difteria/microbiología , Genoma Bacteriano , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genéticaRESUMEN
BACKGROUND: Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW: This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW: The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
RESUMEN
Recently emancipated from the Staphylococcus genus due to genomic differences, Mammaliicoccus sciuri, previously classified as an occasional pathogen, emerges as a significant player in the landscape of resistance gene dissemination among Staphylococcaceae. Despite its classification, its role remained enigmatic. In this study, we delved into the genomic repertoire of M. sciuri to unravel its contribution to resistance and virulence gene transfer in the context of One Health. Through comprehensive analysis of publicly available genomes, we unveiled a diverse pan-immune system adept at defending against exogenous genetic elements, yet concurrently fostering horizontal gene transfer (HGT). Specifically, exploration of CRISPR-Cas systems, with spacer sequences as molecular signatures, elucidated a global dissemination pattern spanning environmental, animal, and human hosts. Notably, we identified the integration of CRISPR-Cas systems within SCCmecs (Staphylococcal Cassette Chromosome mec), harboring key genes associated with pathogenicity and resistance, especially the methicillin resistance gene mecA, suggesting a strategic adaptation to outcompete other mobile genetic elements. Our findings underscored M. sciuri's active engagement in HGT dynamics and evolutionary trajectories within Staphylococcaceae, emphasizing its central role in shaping microbial communities and highlighting the significance of understanding its implications in the One Health framework, an interdisciplinary approach that recognizes the interconnectedness of human, animal, and environmental health to address global health challenges.
Asunto(s)
Sistemas CRISPR-Cas , Transferencia de Gen Horizontal , Salud Única , Humanos , Animales , Genoma Bacteriano , Virulencia/genética , FilogeniaRESUMEN
The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Humanos , Técnicas Electroquímicas/métodos , Sistemas CRISPR-Cas/genética , Pruebas en el Punto de Atención , Sistemas de Atención de PuntoRESUMEN
P21 is a protein secreted by all forms of Trypanosoma cruzi (T. cruzi) with recognized biological activities determined in studies using the recombinant form of the protein. In our recent study, we found that the ablation of P21 gene decreased Y strain axenic epimastigotes multiplication and increased intracellular replication of amastigotes in HeLa cells infected with metacyclic trypomastigotes. In the present study, we investigated the effect of P21 in vitro using C2C12 cell lines infected with tissue culture-derived trypomastigotes (TCT) of wild-type and P21 knockout (TcP21-/-) Y strain, and in vivo using an experimental model of T. cruzi infection in BALB/c mice. Our in-vitro results showed a significant decrease in the host cell invasion rate by TcP21-/- parasites as measured by Giemsa staining and cell count in bright light microscope. Quantitative polymerase chain reaction (qPCR) analysis showed that TcP21-/- parasites multiplied intracellularly to a higher extent than the scrambled parasites at 72h post-infection. In addition, we observed a higher egress of TcP21-/- trypomastigotes from C2C12 cells at 144h and 168h post-infection. Mice infected with Y strain TcP21-/- trypomastigotes displayed higher systemic parasitemia, heart tissue parasite burden, and several histopathological alterations in heart tissues compared to control animals infected with scrambled parasites. Therewith, we propose that P21 is important in the host-pathogen interaction during invasion, cell multiplication, and egress, and may be part of the mechanism that controls parasitism and promotes chronic infection without patent systemic parasitemia.
Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Chagas/parasitología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Ratones Endogámicos BALB C , Parasitemia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/metabolismo , VirulenciaRESUMEN
Gene editing technologies have revolutionized plant molecular biology, providing powerful tools for precise gene manipulation for understanding function and enhancing or modifying agronomically relevant traits. Among these technologies, the CRISPR-Cas9 system has emerged as a versatile and widely accepted strategy for targeted gene manipulation. This protocol provides detailed, step-by-step instructions for implementing CRISPR-Cas9 genome editing in tomato plants, with a specific focus in generating knockout lines for a target gene. For that, the guide RNA should preferentially be designed within the first exon downstream and closer to the start codon. The edited plants obtained are free of transgene cassette for expression of the CRISPR-Cas9 machinery. Key features ⢠Two sgRNAs employed. ⢠Takes 6-12 months to have an edited transgene-free plant. ⢠Setup in tomato.
RESUMEN
Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.
RESUMEN
BACKGROUND: The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS: We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS: Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
RESUMEN
Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.
Asunto(s)
Regulación de la Expresión Génica , Trypanosoma cruzi , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Humanos , Enfermedad de Chagas , Sistemas CRISPR-Cas , Animales , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismoRESUMEN
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Asunto(s)
Eritrocitos , Plasmodium falciparum , Proteómica , Proteínas Protozoarias , Eritrocitos/parasitología , Eritrocitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Humanos , Proteómica/métodos , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Ascorbato Peroxidasas/metabolismo , Unión Proteica , Biotinilación , Endonucleasas , Péptidos , Proteínas , Enzimas MultifuncionalesRESUMEN
Tissue culture optimization protocols limit indica rice breeding. Such a challenge is vital because emergent techniques still rely on tissue culture methods and could allow the breeding of new varieties with higher production and toleration of adverse environmental effects caused by climate change. Genome editing technology, using CRISPR/Cas9, is a fast and precise method for accelerated plant breeding. It limited its use in indica subspecies because of the recalcitrant response to in vitro culture methods. This chapter describes a protocol for CRISPR/Cas9 editing in indica subspecies, specifically in the CR-5272 variety derived from parental lines IR-822, using Agrobacterium tumefaciens and biolistic transformation.
Asunto(s)
Agrobacterium tumefaciens , Sistemas CRISPR-Cas , Edición Génica , Oryza , Oryza/genética , Edición Génica/métodos , Agrobacterium tumefaciens/genética , Genoma de Planta , Fitomejoramiento/métodos , Transformación Genética , Plantas Modificadas Genéticamente/genética , Biolística/métodosRESUMEN
Kerstersia gyiorum is a Gram-negative bacterium found in various animals, including humans, where it has been associated with various infections. Knowledge of the basic biology of K. gyiorum is essential to understand the evolutionary strategies of niche adaptation and how this organism contributes to infectious diseases; however, genomic data about K. gyiorum is very limited, especially from non-human hosts. In this work, we sequenced 12 K. gyiorum genomes isolated from healthy free-living brown-throated sloths (Bradypus variegatus) in the Parque Estadual das Fontes do Ipiranga (São Paulo, Brazil), and compared them with genomes from isolates of human origin, in order to gain insights into genomic diversity, phylogeny, and host specialization of this species. Phylogenetic analysis revealed that these K. gyiorum strains are structured according to host. Despite the fact that sloth isolates were sampled from a single geographic location, the intra-sloth K. gyiorum diversity was divided into three clusters, with differences of more than 1,000 single nucleotide polymorphisms between them, suggesting the circulation of various K. gyiorum lineages in sloths. Genes involved in mobilome and defense mechanisms against mobile genetic elements were the main source of gene content variation between isolates from different hosts. Sloth-specific K. gyiorum genome features include an IncN2 plasmid, a phage sequence, and a CRISPR-Cas system. The broad diversity of defense elements in K. gyiorum (14 systems) may prevent further mobile element flow and explain the low amount of mobile genetic elements in K. gyiorum genomes. Gene content variation may be important for the adaptation of K. gyiorum to different host niches. This study furthers our understanding of diversity, host adaptation, and evolution of K. gyiorum, by presenting and analyzing the first genomes of non-human isolates.
Asunto(s)
Alcaligenaceae , Perezosos , Animales , Perezosos/genética , Filogenia , Brasil , Alcaligenaceae/genéticaRESUMEN
Gene editing tools have triggered a revolutionary transformation in the realms of cellular and molecular physiology, serving as a fundamental cornerstone for the evolution of disease models and assays in cell culture reactions, marked by various enhancements. Concurrently, microfluidics has emerged over recent decades as a versatile technology capable of elevating performance and reducing costs in daily experiments across diverse scientific disciplines, with a pronounced impact on cell biology. The amalgamation of these groundbreaking techniques holds the potential to amplify the generation of stable cell lines and the production of extracellular matrix hydrogels. These hydrogels, assuming a pivotal role in isolating cells at the single-cell level, facilitate a myriad of analyses. This study presents a novel method that seamlessly integrates CRISPR-Cas9 gene editing techniques with single-cell isolation methods in induced pluripotent stem cell (hiPSC) lines, utilizing the combined power of droplets and hydrogels. This innovative approach is designed to optimize clonal selection, thereby concurrently reducing costs and the time required for generating a stable genetically modified cell line. By bridging the advancements in gene editing and microfluidic technologies, our approach not only holds significant promise for the development of disease models and assays but also addresses the crucial need for efficient single-cell isolation. This integration contributes to streamlining processes, making it a transformative method with implications for enhancing the efficiency and cost-effectiveness of stable cell line generation. As we navigate the intersection of gene editing and microfluidics, our study marks a significant stride toward innovative methodologies in the dynamic landscape of cellular and molecular physiology research.
RESUMEN
Abstract Introduction Chimeric Antigen Receptor (CAR) T cells have tremendous potentials for cancer treatment; however, various challenges impede their universal use. These restrictions include the poor function of T cells in tumor microenvironments, the shortage of tumor-specific antigens and, finally, the high cost and time-consuming process, as well as the poor scalability of the method. Creative gene-editing tools have addressed each of these limitations and introduced next generation products for cell therapy. The clustered regularly interspaced short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9) system has triggered a revolution in biology fields, as it has a great capacity for genetic manipulation. Method In this review, we considered the latest development of CRISPR/Cas9 methods for the chimeric antigen receptor T cell (CAR T)-based immunotherapy. Results The ability of the CRISPR/Cas9 system to generate the universal CAR T cells and also potent T cells that are persistent against exhaustion and inhibition was explored. Conclusion: We explained CRISPR delivery methods, as well as addressing safety concerns related to the use of the CRISPR/Cas9 system and their potential solutions.
Asunto(s)
Neoplasias , Terapia Genética , Inmunoterapia Adoptiva , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Receptores Quiméricos de AntígenosRESUMEN
Yersinia ruckeri is the cause of hemorrhagic septicemia, known as enteric redmouth disease, in salmonid fish species. This bacterial pathogen can form biofilms on abiotic surfaces of aquaculture settings or even on the surfaces of the fish themselves, contributing to their persistence in the aquatic environment. Detection methods for this and other fish pathogens can be time-consuming and lack specificity and sensitivity, limiting timely monitoring, the treatment of microbial infections, and effective control of their transmission in aquaculture settings. Rapid and sensitive detection methods for nucleic acids can be crucial for an appropriate surveillance of bacterial pathogens, and the CRISPR/Cas-based assays have emerged as a good alternative since it has been proven to be a useful tool for the rapid, specific, and sensitive detection of viruses and some bacteria. In this study, we explored the capability of the CRISPR/Cas13a system (SHERLOCK) to specifically detect both DNA and RNA (gene transcripts) from planktonic and biofilm samples of the bacterial fish pathogen Y. ruckeri. The assay was designed to detect the gyrA gene and the small noncoding RNAs (sRNAs) MicA and RprA from planktonic cultures and biofilm samples prepared in marine broth. The specific crRNA designed for these gene targets included a 28 nt specific gene sequence, and a scaffold sequence necessary for Cas13-binding. For all the assays, the nucleic acids obtained from samples were previously subjected to isothermal amplification with the recombinase polymerase amplification (RPA) method and the subsequent T7 transcription of the RPA amplicons. Finally, the detection of nucleic acids of Y. ruckeri was by means of a reporter signal released by the Cas13a collateral RNA cleavage triggered upon target recognition, measured by fluorescence- or lateral-flow-based readouts. This CRISPR/Cas13a-based assay was able to specifically detect both DNA and sRNAs from the Y. ruckeri samples, and the sensitivity was comparable to that obtained with qPCR analysis, highlighting the potential applicability of this CRISPR/Cas13a-based assay for fish pathogen surveillance.
RESUMEN
Silicosis is a systemic disease caused by long-term exposure to high concentrations of free silica dust particles in the workplace. It is characterized by a persistent inflammatory response, fibroblast proliferation, and excessive collagen deposition, leading to pulmonary interstitial fibrosis. Epithelial interstitial transformation (EMT) can cause epithelial cells to lose their tight junctions, cell polarity, and epithelial properties, thereby enhancing the properties of interstitial cells, which can lead to the progression of fibrosis and the formation of scar tissue. Integrin 1 (ITGB1) is considered an important factor for promoting EMT and tumor invasion in a variety of tumors and also plays an important role in the progression of fibrotic diseases. Therefore, ITGB1 can be used as a potential target for the treatment of silicosis. In this study, we found that silica exposure induced epithelial-mesenchymal transformation in rats and that the expression of integrin ITGB1 was elevated along with the EMT. We used CRISPR/Cas9 technology to construct integrin ITGB1 knockdown cell lines for in vitro experiments. We compared the expression of the EMT key proteins E-cadherin and vimentin in the ITGB1 knockdown cells and wild-type cells simultaneously stimulated by silica and detected the aggregation point distribution of E-cadherin and vimentin in the cells using laser confocal microscopy. Our results showed that ITGB1 knockout inhibited the ITGB1/ILK/Snail signaling pathway and attenuated the EMT occurrence compared to control cells. These results suggested that ITGB1 is associated with silica-induced EMT and may be a potential target for the treatment of silicosis.
RESUMEN
Somatic growth in vertebrates is regulated endocrinologically by the somatotropic axis, headed by the growth hormone (GH) and the insulin growth factor-I (IGF-I). Somatostatin (Sst), a peptide hormone synthesized in the hypothalamus, modulates GH actions through its receptors (Sstr). Four Sstr subtypes (Sstr 1-3 and 5) have been identified in teleosts. However, little is known about whether they have a specific function or tissue expression. The aim of this study was to determine the role of sstr2 and sstr5 in the growth of the medaka (Oryzias latipes). The assessed expression pattern across diverse tissues highlighted greater prevalence of sstr1 and sstr3 in brain, intestine and muscle than in pituitary or liver. The expression of sstr2 was high in all the tissues tested, while sstr5 was predominantly expressed in the pituitary gland. A CRISPR/Cas9 sstr5 mutant with loss of function (sstr5-/-) was produced. Assessment of sstr5-/- indicated no significant difference with the wild type regarding growth parameters such as standard length, body depth, or peduncle depth. Furthermore, the functional loss of sstr5 had no impact on the response to a nutritional challenge. The fact that several sstr subtypes were upregulated in different tissues in sstr5-/- medaka suggests that in the mutant fish, there may be a compensatory effect on the different tissues, predominantly by sstr1 in the liver, brain and pituitary, with sstr2 being upregulated in pituitary and liver, and sstr3 only presenting differential expression in the brain. Analysis of the sstr subtype and the sstr5-/- fish showed that sstr5 was not the only somatostatin receptor responsible for Sst-mediated Gh regulation.