Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(9): 114741, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276347

RESUMEN

Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.

2.
Cell Rep ; 43(9): 114735, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276349

RESUMEN

Phenotypic associations have been reported between heart failure (HF) and blood lipids (BLs), blood pressure (BP), and blood glucose (BG). However, the shared genetic etiology underlying these associations remains incompletely understood. Conducting a large-scale multi-trait association study for HF with these traits, we discovered 143 previously unreported genomic risk loci for HF. Results showed that 46, 35, and 14 colocalized loci were shared by HF with BLs, BP, and BG, respectively. Notably, the loci shared by HF with these traits rarely overlapped, indicating distinct mechanisms. The combination of gene-mapping, gene-based, and transcriptome-wide association analyses prioritized noteworthy candidate genes (such as lipoprotein lipase [LPL], G protein-coupled receptor kinase 5 [GRK5], and troponin C1, slow skeletal and cardiac type [TNNC1]) for HF. Enrichment analysis revealed that HF exhibited comparable characteristics to cardiovascular traits and metabolic traits correlated to BLs, BP, and BG. Finally, we reported drug repurposing candidates and plasma protein targets for HF. These results provide biological insights into the pathogenesis of these comorbidities of HF.

3.
Cell Rep ; 43(9): 114693, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39235946

RESUMEN

Nutrient digestion, absorption, and export must be coordinated in the gut to meet the nutritional needs of the organism. We used the Drosophila intestine to characterize the mechanisms that coordinate the fate of dietary lipids. We identified enterocytes specialized in absorbing and exporting lipids to peripheral organs. Distinct hepatocyte-like cells, called oenocytes, communicate with these enterocytes to adjust intestinal lipid storage and export. A single transcription factor, Drosophila hepatocyte nuclear factor 4 (dHNF4), supports this gut-liver axis. In enterocytes, dHNF4 maximizes dietary lipid export by preventing their sequestration in cytoplasmic lipid droplets. In oenocytes, dHNF4 promotes the expression of the insulin antagonist ImpL2 to activate Foxo and suppress lipid retention in enterocytes. Disruption of this switch between lipid storage and export is associated with intestinal inflammation, suggesting a lipidic origin for inflammatory bowel diseases. These studies establish dHNF4 as a central regulator of intestinal metabolism and inter-organ lipid trafficking.

4.
Cell Rep ; 43(9): 114691, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39235944

RESUMEN

The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.

5.
Cell Rep ; 43(9): 114728, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39264808

RESUMEN

Pyroptosis, a pro-inflammatory form of programmed cell death, is crucial for host defense against pathogens and danger signals. Proteolytic cleavage of gasdermin proteins B-E (GSDMB-GSDME) is well established as a trigger for pyroptosis, but the intracellular activation mechanism of GSDMA remains elusive. Here, we demonstrate that severe starvation induces pyroptosis through phosphorylation-induced activation of GSDMA. Nutrient stresses stimulate GSDMA activation via phosphorylation mediated by Unc-51-like autophagy-activating kinase 1 (ULK1). Phosphorylation of Ser353 on human GSDMA by ULK1 or the phospho-mimetic Ser353Asp mutant of GSDMA liberates GSDMA from auto-inhibition, facilitating its membrane targeting and initiation of pyroptosis. To further validate the significance of GSDMA phosphorylation, we generated a constitutively active mutant Ser354Asp of mouse Gsdma, which induced skin inflammation and hyperplasia in mice, reminiscent of phenotypes with activated Gsdma. This study uncovers phosphorylation of GSDMA as a mechanism underlying pyroptosis initiation and cellular response to nutrient stress.

6.
Cell Rep ; 43(9): 114676, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217614

RESUMEN

Obesity and fatty liver diseases-metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)-affect over one-third of the global population and are exacerbated in individuals with reduced functional aldehyde dehydrogenase 2 (ALDH2), observed in approximately 560 million people. Current treatment to prevent disease progression to cancer remains inadequate, requiring innovative approaches. We observe that Aldh2-/- and Aldh2-/-Sptbn1+/- mice develop phenotypes of human metabolic syndrome (MetS) and MASH with accumulation of endogenous aldehydes such as 4-hydroxynonenal (4-HNE). Mechanistic studies demonstrate aberrant transforming growth factor ß (TGF-ß) signaling through 4-HNE modification of the SMAD3 adaptor SPTBN1 (ß2-spectrin) to pro-fibrotic and pro-oncogenic phenotypes, which is restored to normal SMAD3 signaling by targeting SPTBN1 with small interfering RNA (siRNA). Significantly, therapeutic inhibition of SPTBN1 blocks MASH and fibrosis in a human model and, additionally, improves glucose handling in Aldh2-/- and Aldh2-/-Sptbn1+/- mice. This study identifies SPTBN1 as a critical regulator of the functional phenotype of toxic aldehyde-induced MASH and a potential therapeutic target.

7.
Cell Rep ; 43(9): 114648, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167491

RESUMEN

Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.

8.
Cell Rep ; 43(9): 114663, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167490

RESUMEN

Calorie restriction (CR) extends lifespan and healthspan in diverse species. Comparing ad libitum- and CR-fed mice is challenging due to their significantly different feeding patterns, with CR-fed mice consuming their daily meal in 2 h and then subjecting themselves to a prolonged daily fast. Here, we examine how ad libitum- and CR-fed mice respond to tests performed at various times and fasting durations and find that the effects of CR-insulin sensitivity, circulating metabolite levels, and mechanistic target of rapamycin 1 (mTORC1) activity-result from the specific temporal conditions chosen, with CR-induced improvements in insulin sensitivity observed only after a prolonged fast, and the observed differences in mTORC1 activity between ad libitum- and CR-fed mice dependent upon both fasting duration and the specific tissue examined. Our results demonstrate that much of our understanding of the effects of CR are related to when, relative to feeding, we choose to examine the mice.

9.
Cell Rep ; 43(9): 114662, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178116

RESUMEN

Ferroptosis is a form of nonapoptotic cell death characterized by iron-dependent peroxidation of polyunsaturated phospholipids. However, much remains unknown about the regulators of ferroptosis. Here, using CRISPR-Cas9-mediated genetic screening, we identify protein arginine methyltransferase 1 (PRMT1) as a crucial promoter of ferroptosis. We find that PRMT1 decreases the expression of solute carrier family 7 member 11 (SLC7A11) to limit the abundance of intracellular glutathione (GSH). Moreover, we show that PRMT1 interacts with ferroptosis suppressor protein 1 (FSP1), a GSH-independent ferroptosis suppressor, to inhibit the membrane localization and enzymatic activity of FSP1 through arginine dimethylation at R316, thus reducing CoQ10H2 content and inducing ferroptosis sensitivity. Importantly, genetic depletion or pharmacological inhibition of PRMT1 in mice prevents ferroptotic events in the liver and improves the overall survival under concanavalin A (ConA) exposure. Hence, our findings suggest that PRMT1 is a key regulator of ferroptosis and a potential target for antiferroptosis therapeutics.

10.
Cell Rep ; 43(8): 114573, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39093701

RESUMEN

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Factor 15 de Diferenciación de Crecimiento , Miocitos Cardíacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Ratones , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Masculino , Diástole/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Inflamación/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células THP-1 , Obesidad/metabolismo , Lipopolisacáridos/farmacología
11.
Cell Rep ; 43(8): 114577, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096490

RESUMEN

Growth and differentiation factor 15 (GDF15) has recently emerged as a weight loss and insulin-sensitizing factor. Growing evidence also supports a role for GDF15 as a physiological, exercise-induced stress signal. Here, we tested whether GDF15 is required for the insulin-sensitizing effects of exercise in mice and humans. At baseline, both under a standard nutritional state and high-fat feeding, GDF15 knockout (KO) mice display normal glucose tolerance, systemic insulin sensitivity, maximal speed, and endurance running capacity when compared to wild-type littermates independent of sex. When submitted to a 4-week exercise training program, both lean and obese wild-type and GDF15 KO mice similarly improve their endurance running capacity, glucose tolerance, systemic insulin sensitivity, and peripheral glucose uptake. Insulin-sensitizing effects of exercise training were also unrelated to changes in plasma GDF15 in humans. In summary, we here show that GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Resistencia a la Insulina , Insulina , Ratones Noqueados , Condicionamiento Físico Animal , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Animales , Humanos , Masculino , Insulina/metabolismo , Insulina/sangre , Femenino , Ratones , Ratones Endogámicos C57BL , Adulto
12.
Cell Rep ; 43(8): 114585, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39110590

RESUMEN

Previous studies have demonstrated that gut microbiota dysbiosis promotes the development of mastitis. The interaction of the vagus nerve and gut microbiota endows host homeostasis and regulates disease development, but whether the vagus nerve participates in the pathogenesis of mastitis is unclear. Here, vagotomized mice exhibit disruption of the blood-milk barrier and mammary gland inflammation. Notably, mastitis and barrier damage caused by vagotomy are dependent on the gut microbiota, as evidenced by antibiotic treatment and fecal microbiota transplantation. Vagotomy significantly alters the gut microbial composition and tryptophan metabolism and reduces the 5-hydroxyindole acetic acid (5-HIAA) level. Supplementation with 5-HIAA alleviates vagotomy-induced mastitis, which is associated with the activation of the aryl hydrocarbon receptor (AhR) and subsequent inhibition of the NF-κB pathway. Collectively, our findings indicate the important role of the vagus-mediated gut-mammary axis in the pathogenesis of mastitis and imply a potential strategy for the treatment of mastitis by targeting the vagus-gut microbiota interaction.


Asunto(s)
Microbioma Gastrointestinal , Mastitis , Triptófano , Vagotomía , Animales , Triptófano/metabolismo , Femenino , Ratones , Mastitis/metabolismo , Mastitis/microbiología , Receptores de Hidrocarburo de Aril/metabolismo , Nervio Vago/metabolismo , FN-kappa B/metabolismo , Disbiosis/microbiología , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal , Glándulas Mamarias Animales/microbiología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología
13.
Cell Rep ; 43(8): 114607, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126652

RESUMEN

Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1ß. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.


Asunto(s)
Inflamación , Interferón Tipo I , Macrófagos , Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico Sintasa de Tipo II , Transducción de Señal , Infecciones Estafilocócicas , Animales , Interferón Tipo I/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Glucólisis , Interleucina-1beta/metabolismo
14.
Cell Rep ; 43(8): 114600, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126653

RESUMEN

Malaria is initiated as Plasmodium sporozoites are injected into the dermis when an infected mosquito probes on a vertebrate host for a blood meal. Factors in the mosquito saliva, such as AgTRIO, can alter the ability of Anopheles gambiae to transmit Plasmodium. We therefore used CRISPR-Cas9-mediated genome editing to generate AgTRIO knockout (KO) A. gambiae and examined the ability of these mosquitoes to probe on a vertebrate host. AgTRIO KO mosquitoes showed a diminished host probing capacity and required repetitive probing to locate a blood resource to complete a blood meal. This increased probing resulted in enhanced Plasmodium transmission to the vertebrate host. Our data demonstrate the importance of the A. gambiae saliva protein AgTRIO in probing and its influence on the ability of mosquitoes to transmit malaria.


Asunto(s)
Anopheles , Animales , Anopheles/parasitología , Anopheles/genética , Malaria/transmisión , Malaria/parasitología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Ratones , Sistemas CRISPR-Cas/genética , Femenino , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética
15.
Cell Rep ; 43(8): 114549, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39093699

RESUMEN

CREB-regulated transcription co-activator (CRTC) is activated by Calcineurin (CaN) to regulate gluconeogenic genes. CaN also has roles in cardiac hypertrophy. Here, we explore a cardiac-autonomous role for CRTC in cardiac hypertrophy. In Drosophila, CRTC mutants exhibit severe cardiac restriction, myofibrillar disorganization, fibrosis, and tachycardia. Cardiac-specific CRTC knockdown (KD) phenocopies mutants, and cardiac overexpression causes hypertrophy. CaN-induced hypertrophy in Drosophila is reduced in CRTC mutants, suggesting that CRTC mediates the effects. RNA sequencing (RNA-seq) of CRTC-KD and -overexpressing hearts reveals contraregulation of metabolic genes. Genes with conserved CREB sites include the fly ortholog of Sarcalumenin, a Ca2+-binding protein. Cardiac manipulation of this gene recapitulates the CRTC-KD and -overexpression phenotypes. CRTC KD in zebrafish also causes cardiac restriction, and CRTC KD in human induced cardiomyocytes causes a reduction in Srl expression and increased action potential duration. Our data from three model systems suggest that CaN-CRTC-Sarcalumenin signaling represents an alternate, conserved pathway underlying cardiac function and hypertrophy.


Asunto(s)
Cardiomegalia , Proteínas de Drosophila , Factores de Transcripción , Pez Cebra , Animales , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Pez Cebra/metabolismo , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal , Calcineurina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética
16.
Cell Rep ; 43(9): 114681, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180751

RESUMEN

Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.

17.
Cell Rep ; 43(9): 114686, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216002

RESUMEN

Histone lysine lactylation (Kla) is a post-translational modification, and its role in tumor immune escape remains unclear. Here, we find that increased histone lactylation is associated with poor response to immunotherapy in head and neck squamous cell carcinoma (HNSCC). H3K9la is identified as a specific modification site in HNSCC. Using cleavage under targets and tagmentation analyses, interleukin-11 (IL-11) is identified as a downstream regulatory gene of H3K9la. IL-11 transcriptionally activates immune checkpoint genes through JAK2/STAT3 signaling in CD8+ T cells. Additionally, IL-11 overexpression promotes tumor progression and CD8+ T cell dysfunction in vivo. Moreover, IL11 knockdown reverses lactate-induced CD8+ T cell exhaustion, and cholesterol-modified siIL11 restores CD8+ T cell killing activity and enhances immunotherapy efficacy. Clinically, H3K9la positively correlates with IL-11 expression and unfavorable immunotherapy responses in patients. This study reveals the crucial role of histone lactylation in immune escape, providing insights into immunotherapy strategies for HNSCC.

18.
Cell Rep ; 43(8): 114627, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167489

RESUMEN

Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Serina C-Palmitoiltransferasa , Serina C-Palmitoiltransferasa/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Esfingolípidos/biosíntesis , Humanos , Unión Proteica
19.
Cell Rep ; 43(8): 114587, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39116208

RESUMEN

Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.


Asunto(s)
Caquexia , Atrofia Muscular , Miogenina , Miostatina , Caquexia/patología , Caquexia/metabolismo , Caquexia/etiología , Animales , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Ratones , Miostatina/metabolismo , Miostatina/genética , Miogenina/metabolismo , Miogenina/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Masculino , Transducción de Señal , Folistatina/metabolismo , Humanos
20.
Cell Rep ; 43(8): 114579, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39153198

RESUMEN

Mesenchymal stem/stromal cell (MSC) therapies have had limited success so far in clinical trials due in part to heterogeneity in immune-responsive phenotypes. Therefore, techniques to characterize these properties of MSCs are needed during biomanufacturing. Imaging cell shape, or morphology, has been found to be associated with MSC immune responsivity-but a direct relationship between single-cell morphology and function has not been established. We used label-free differential phase contrast imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to evaluate single-cell morphology and explore relationships with lipid metabolic immune response. In interferon gamma (IFN-γ)-stimulated MSCs, we found higher lipid abundances from the ceramide-1-phosphate (C1P), phosphatidylcholine (PC), LysoPC, and triglyceride (TAG) families that are involved in cell immune function. Furthermore, we identified differences in lipid signatures in morphologically defined MSC subpopulations. The use of single-cell optical imaging coupled with single-cell spatial lipidomics could assist in optimizing the MSC production process and improve mechanistic understanding of manufacturing process effects on MSC immune activity and heterogeneity.


Asunto(s)
Lipidómica , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Lipidómica/métodos , Interferón gamma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Análisis de la Célula Individual/métodos , Ceramidas/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA