Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
NMR Biomed ; : e5257, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229964

RESUMEN

This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8 weeks (late inflammation and fibrosis) and 12 weeks (8 weeks of treatment followed by 4 weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8 weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8 weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8 weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8 weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.

2.
J Magn Reson ; 367: 107759, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216461

RESUMEN

NMR supersequences, as exemplified by the NOAH (NMR by Ordered Acquisition using 1H detection) technique, are a powerful way of acquiring multiple 2D data sets in much shorter durations. This is accomplished through targeted excitation and detection of the magnetisation belonging to specific isotopologues ('magnetisation pools'). Separately, the HSQC-COSY experiment has recently seen an increase in popularity due to the high signal dispersion in the indirect dimension and the removal of ambiguity traditionally associated with HSQC-TOCSY experiments. Here, we describe how the HSQC-COSY experiment can be integrated as a 'module' within NOAH supersequences. The benefits and drawbacks of several different pulse sequence implementations are discussed, with a particular focus on how sensitivities of other modules in the same supersequence are affected.

3.
J Magn Reson ; 362: 107675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631172

RESUMEN

Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.

4.
Plant J ; 117(6): 1716-1727, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361338

RESUMEN

Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cumarinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Homeostasis , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
5.
Chimia (Aarau) ; 77(4): 212-216, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38047798

RESUMEN

Magic angle spinning (MAS) in 1H NMR has allowed progress from featureless spectra in static samples to linewidths of a few hundreds of Hertz for powdered solids at the fastest spinning rates available today (100-150 kHz). While this is a remarkable improvement, this level of resolution is still limiting to the widespread use of 1H NMR for complex systems. This review will discuss two recent alternative strategies that have significantly improved 1H resolution, when combined with fast MAS. The first is based on anti-z-COSY, a 2D experiment originally used for J decoupling in liquids, which removes residual broadening due to splittings caused by imperfect coherent averaging of MAS. The second strategy is to obtain pure isotropic proton (PIP) spectra in solids, by parametrically mapping any residual broadening due to imperfect averaging into a second dimension of a multidimensional correlation spectrum.

6.
Heliyon ; 9(12): e22825, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125542

RESUMEN

In this paper, the Gaussian optical properties and the first- and third-order isotropic and anisotropic chromatic aberrations of the Glaser magnetic lens have been derived analytically and then calculated numerically based on two methods: the differential-algebraic DA and the electron optical aberration integrals. These coefficients have been recalculated for object magnetic immersion OMI. The expressions of chromatic aberration coefficients with the inclusion of the OMI effect of round electron lenses were not published in the literature until the present work. The numerical results of high-order chromatic aberration coefficients of Glaser magnetic lenses calculated using the DA method are shown to be in excellent agreement with those calculated using the integral aberration method and with the minor relative errors of order (10-7- 10-8), indicating that all the formulas for the chromatic aberration coefficients are entirely correct. For this purpose, COSY INFINITY 10 and Mathematica 11 were used, and both proved to be excellent computer programs for this work.

7.
Angew Chem Int Ed Engl ; 62(50): e202312302, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37837321

RESUMEN

The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods. The approach is illustrated with a mixture of terpene molecules and a benchtop NMR spectrometer, paving the way to a sensitive, information-rich and affordable analytical method.

8.
AAPS PharmSciTech ; 24(6): 139, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349667

RESUMEN

In addition to understanding the mechanism of action for a specific drug candidate, information regarding degradation pathways/products under various stress conditions is essential to know about their short- and long-term effects on health and environment. In line with that, tenofovir disoproxil fumarate (TDF, a co-crystal form of the prodrug tenofovir with fumaric acid), particularly used as an antiretroviral drug for treatment of HIV and hepatitis-B among others, is subjected to primarily thermal and other ICH-prescribed forced degradation conditions and their various degradation products are identified. Upon thermal degradation at 60°C for 8 h, five different degradants (namely DP-1 to DP-5) are isolated, and their structures are unambiguously confirmed using advanced analytical and spectroscopic techniques including ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), high-resolution mass spectrometry (HRMS), state-of-the-art 1- and 2-dimensional nuclear magnetic resonance (1D and 2D NMR), and Fourier-transform infrared spectroscopic (FT-IR) techniques. Among fully characterized five degradants, two new degradants (DP-2 and DP-4) are identified which can potentially impact the stability of TDF via different pathways. Plausible mechanisms leading to all five thermal degradation products are also proposed including the generation of carcinogenic formaldehyde for some cases. The present systematic structural study especially combining MS and advanced NMR investigations unequivocally confirms the structures of the degradants and opens opportunities for connecting the various degradation pathways especially for the TDF-related pharmaceutical candidates.


Asunto(s)
Antirretrovirales , Espectrometría de Masas en Tándem , Tenofovir , Cromatografía Liquida , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem/métodos , Antirretrovirales/química
9.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874158

RESUMEN

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

10.
MethodsX ; 10: 102096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926267

RESUMEN

Alternative bio-refinery technologies are required to promote the commercial utilization of plant biomass components. The fructooligosaccharide (FOS) obtained after hydrolysis of the hemicellulose fractions was mainly applied in the pharmaceutical and food industries. Agricultural bi-product is a rich constituent in dietary fibres, which have prebiotic effects on the intestinal microbiota and the host. Herein we explored the impact of FOS on microbiota modulation and the gut homeostasis effect. High fructooligosaccharide recovery was obtained using alkaline extraction techniques. The enzymatic method produced fructooligosaccharides with minor contamination from fructan and glucan components, although it had a low yield. But combining the alkaline and enzymatic process provides a higher yield ratio and purity of fructooligosaccharides. The structure of the fructooligosaccharide was confirmed, according to FTIR, 13C NMR, 1H NMR and 2D-NMR data. Our results could be applied to the development of efficient extraction of valuable products from agricultural materials using enzyme-mediated methods, which were found to be a cost-effective way to boost bio-refining value. Fructooligosaccharides with varying yields, purity, and structure can be obtained.

11.
NMR Biomed ; 36(2): e4833, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36114827

RESUMEN

The structural and chemical complexities within the brain pose a challenge that few noninvasive techniques can tackle with the dexterity of nuclear magnetic resonance (NMR) spectroscopy. Still, even with the advent of ultrahigh fields and of cryogenically cooled coils for in vivo research, the superposition of metabolic resonances arising from the brain remains a challenge. The present study explores the potential to tackle this milieu using a combination of two-dimensional (2D) NMR techniques, implemented on murine brains in vivo at 15.2 T and ex vivo at 14.1 T. While both experiments were affected by substantial inhomogeneous broadenings conveying distinct elongated lineshapes to the cross-peaks, the ability of increased fields to resolve off-diagonal resonances was clear. A comparison between the corresponding conventional and double quantum-filtered correlated spectroscopy traces enabled an improved assignment of in vivo resonances on the basis of more sensitive ex vivo 2D acquisitions, foremost on the basis of homonuclear cross-relaxation-driven correlations for peaks resonating downfield from water, and of heteronuclear correlations at natural abundance for the upfield protons. With the aid of such 2D correlations approximately 29 metabolites could be resolved and identified. This enhanced resolution was used to explore features related to the metabolites' diffusivities, their exposure to water, and their facility to undergo magnetization transfers to amide/amine/hydroxyl resonances. Cross-peaks from main murine brain biomolecules, including choline, creatine, γ-aminobutyric acid, N-acetyl aspartate, glutamine, and glutamate, showed enhancements in several of these various features, opening interesting vistas about metabolite compartmentalization as viewed by these 2D NMR experiments.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Ratones , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Agua/metabolismo
12.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500234

RESUMEN

Vegetable oils are bio-based and sustainable starting materials that can be used to develop chemicals for industrial processes. In this study, the functionalization of three vegetable oils (grape, hemp, and linseed) with maleic anhydride was carried out either by conventional heating or microwave activation to obtain products that, after further reactions, can enhance the water dispersion of oils for industrial applications. To identify the most abundant derivatives formed, trans-3-octene, methyl oleate, and ethyl linoleate were reacted as reference systems. A detailed NMR study, supported by computational evidence, allowed for the identification of the species formed in the reaction of trans-3-octene with maleic anhydride. The signals in the 1H NMR spectra of the alkenyl succinic anhydride (ASA) moieties bound to the organic chains were clearly identified. The reactions achieved by conventional heating were carried out for 5 h at 200 °C, resulting in similar or lower amounts of ASA units/g of oil with respect to the reactions performed by microwave activation, which, however, induced a higher viscosity of the samples.


Asunto(s)
Anhídridos Maleicos , Aceites de Plantas , Anhídridos Maleicos/química , Aceites de Plantas/química , Espectroscopía de Resonancia Magnética , Fenómenos Químicos , Imagen por Resonancia Magnética
13.
Food Chem X ; 13: 100211, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35498979

RESUMEN

A water-soluble heteropolysaccharide (SGP2-1) was purified from Suillus granulatus fruiting bodies by anion-exchange chromatography and gel permeation chromatography. The structural characteristics were analyzed by high-performance gel permeation chromatography, high-performance liquid chromatography, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. The immunostimulatory activity was investigated using RAW 264.7 macrophages. Results showed that SGP2-1 with weight average molecular weight of 150.75 kDa was composed of mannose, glucose, and xylose. The backbone of SGP2-1 was mainly composed of â†’ 4)-α-Glcp-(1→, and the terminal group α-d-Glcp â†’ was linked to the main chain by O-6 position. SGP2-1 could significantly enhance pinocytic capacity, reactive oxygen species production, and cytokines secretion. SGP2-1 exerted immunomodulatory effects through interacting with toll-like receptor 2, and activating mitogen-activated protein kinase, phosphatidylinositol-3-kinase/protein kinase B, and nuclear factor-kappa B signaling pathways. These findings indicated that SGP2-1 could be explored as a potential immunomodulatory agent for application in functional foods.

14.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566314

RESUMEN

The widespread use of phytocannabinoids or cannabis extracts as ingredients in numerous types of products, in combination with the legal restrictions on THC content, has created a need for the development of new, rapid, and universal analytical methods for their quantitation that ideally could be applied without separation and standards. Based on previously described qNMR studies, we developed an expanded 1H qNMR method and a novel 2D-COSY qNMR method for the rapid quantitation of ten major phytocannabinoids in cannabis plant extracts and cannabis-based products. The 1H qNMR method was successfully developed for the quantitation of cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabigerol (CBG), cannabigerolic acid (CBGA), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabinolic acid (Δ9-THCA), Δ8-tetrahydrocannabinol (Δ8-THC), cannabielsoin (CBE), and cannabidivarin (CBDV). Moreover, cannabidivarinic acid (CBDVA) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) can be distinguished from CBDA and Δ9-THCA respectively, while cannabigerovarin (CBGV) and Δ8-tetrahydrocannabivarin (Δ8-THCV) present the same 1H-spectra as CBG and Δ8-THC, respectively. The COSY qNMR method was applied for the quantitation of CBD, CBDA, CBN, CBG/CBGA, and THC/THCA. The two methods were applied for the analysis of hemp plants; cannabis extracts; edible cannabis medium-chain triglycerides (MCT); and hemp seed oils and cosmetic products with cannabinoids. The 1H-NMR method does not require the use of reference compounds, and it requires only a short time for analysis. However, complex extracts in 1H-NMR may have a lot of signals, and quantitation with this method is often hampered by peak overlap, with 2D NMR providing a solution to this obstacle. The most important advantage of the COSY NMR quantitation method was the determination of the legality of cannabis plants, extracts, and edible oils based on their THC/THCA content, particularly in the cases of some samples for which the determination of THC/THCA content by 1H qNMR was not feasible.


Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/análisis , Cannabinol , Cannabis/química , Dronabinol/análisis , Extractos Vegetales/análisis
15.
Front Neurol ; 13: 789355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370872

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.

16.
Methods Mol Biol ; 2303: 183-207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626380

RESUMEN

Glycosaminoglycans (GAGs) are sulfated glycans of complex structure and multiple biological actions. They are composed of disaccharide repeating units of alternating uronic acid/galactose and hexosamine. Sulfation patterns are an additional structural variation of these polymers. Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques employed in structural analysis of GAGs. 1D and 2D NMR spectra, both homonuclear 1H and heteronuclear 1H-13C, are the commonest NMR methods used. This chapter describes the overall experimental methods and materials necessary for adequate preparation of GAG samples for NMR investigations aimed to unveil the main structural characteristics of these biomacromolecules. The NMR methods discussed here cover all three isotopes (1H, 13C, and 15N) that can be exploited in structural analysis of GAGs. These NMR methods are described from an overall standpoint, to be applied to any GAG family, extracted from either natural or synthetic sources and destined to either basic research or pharmaceutical applications.


Asunto(s)
Espectroscopía de Resonancia Magnética , Glicosaminoglicanos
17.
Food Chem ; 370: 131376, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34662793

RESUMEN

Mangiferin (MGF), from Mangifera indica is well reported for its hypoglycemic activity and hypolipidemic activity. However, MGF suffers therapeutic limitation due to poor solubility causing disparaging bioavailability. Herein to address this problem, we have incorporated MGF in alginate grafted N-succinylated chitosan (NSC) nanomatrix. Characterization by molecular docking, FT-IR and 2D-NMR (COSY) has revealed that MGF could reinforce interaction with NSC. The OH and CH2OH groups of MGF may set interactions with pyranosic OH, CH2OH, NH2 (or NH-succinyl and COOH-succinyl) of NSC. The NSC-MGF nanoconjugate revealed a spherical particle geometry of 100 âˆ¼ 200 nm size. The encapsulated MGF showed 100% release in vitro. In vivo, NSC-MGF nanoconjugate revealed blood glucose lowering from 300 mg/dL to âˆ¼ 90 mg/dL as well as âˆ¼ 37% lowering of total plasma cholesterol. This is well comparative to the earlier reports which acknowledged only 1 âˆ¼ 36% lowering of plasma cholesterol with MGF. Furthermore, NSC-MGF lowered serum trigyceride to âˆ¼ 61%, while in earlier studies, only 10 âˆ¼ 40% serum triglycerides reduction was found with solitary MGF.


Asunto(s)
Aterosclerosis , Quitosano , Diabetes Mellitus , Hiperlipidemias , Nanopartículas , Alginatos , Animales , Hiperlipidemias/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Nanoconjugados , Tamaño de la Partícula , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Xantonas
18.
J Magn Reson ; 335: 107111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959128

RESUMEN

The 3J coupling values are commonly used in biomolecular NMR to extract structural information. Here we present a novel intra HNCA IP/AP E.COSY pulse sequence that allows to measure 3J HNHa coupling constants by a simple and rapid two-dimensional 1H-15N correlation experiment where the 15N frequency is encoded at the same time as the 1J HaCa coupling evolution. The advantage with respect to the conventional 3D HNCA E.COSY pulse sequence is the dimensionality reduction to a simple 2D experiment, which decreases acquisition time and facilitates data analysis. The performance of this new experiment is demonstrated with an ubiquitin sample at 500 MHz.


Asunto(s)
Ubiquitina , Resonancia Magnética Nuclear Biomolecular/métodos , Ubiquitina/química
19.
Magn Reson Chem ; 59(5): 500-533, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33855734

RESUMEN

There continues to be a disturbing number of natural products reported in the literature whose structures are incorrect. At least in part, this reflects the fact that many natural product chemists have limited formal nuclear magnetic resonance training. Gaps in training and lack of awareness regarding the challenges and ambiguities associated with two-dimensional nuclear magnetic resonance data interpretation can easily lead to errors in structure elucidation. The purpose of this tutorial is to point out some of these issues, highlight the kinds of errors that have been made and provide specific advice on how to avoid these missteps such that the risk of reporting a wrong structure is minimized.

20.
J Agric Food Chem ; 69(13): 3912-3922, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780246

RESUMEN

The structural heterogeneity of water-extractable arabinoxylan (WE-AX) impacts wheat flour functionality. 1H diffusion-ordered (DOSY) nuclear magnetic resonance (NMR) spectroscopy revealed structural heterogeneity within WE-AX fractions obtained via graded ethanol precipitation. Combination with high-resolution 1H-1H correlation NMR spectroscopy (COSY) allowed identifying the relationship between the xylose substitution patterns and diffusion properties of the subpopulations. WE-AX fractions contained distinct subpopulations with different diffusion rates. WE-AX subpopulations with a high self-diffusivity contained high levels of monosubstituted xylose. In contrast, those with a low self-diffusivity were rich in disubstituted xylose, suggesting that disubstitution mainly occurs in WE-AX molecules with large hydrodynamic volumes. In general, WE-AX fractions precipitating at higher and lower ethanol concentrations had higher and lower self-diffusivity and more and less complex substitution patterns. Although 1H DOSY NMR, as performed in this study, was valuable for elucidating WE-AX structural heterogeneity, physical limitations arose when studying WE-AX populations with high molecular weight dispersions.


Asunto(s)
Harina , Triticum , Harina/análisis , Espectroscopía de Resonancia Magnética , Agua , Xilanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA