Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554706

RESUMEN

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Inestabilidad Genómica , Proteostasis , Humanos , Adenosina Trifosfatasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética
2.
Curr Top Membr ; 92: 47-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38007269

RESUMEN

Voltage-gated sodium channels (Nav) are protein complexes that play fundamental roles in the transmission of signals in the nervous system, at the neuromuscular junction and in the heart. They are mainly present in excitable cells where they are responsible for triggering action potentials. Dysfunctions in Nav ion conduction give rise to a wide range of conditions, including neurological disorders, hypertension, arrhythmia, pain and cancer. Nav family 1 is composed of nine members, named numerically from 1 to 9. A Nax family also exists and is involved in body-fluid homeostasis. Of particular interest is Nav1.7 which is highly expressed in the sensory neurons of the dorsal root ganglions, where it is involved in the propagation of pain sensation. Gain-of-function mutations in Nav1.7 cause pathologies associated with increased pain sensitivity, while loss-of-function mutations cause reduced sensitivity to pain. The last decade has seen considerable effort in developing highly specific Nav1.7 blockers as pain medications, nonetheless, sufficient efficacy has yet to be achieved. Evidence is now conclusively showing that Navs are also present in many types of cancer cells, where they are involved in cell migration and invasiveness. Nav1.7 is anomalously expressed in endometrial, ovarian and lung cancers. Nav1.7 is also involved in Chemotherapy Induced Peripheral Neuropathy (CIPN). We propose that the knowledge and tools developed to study the role of Nav1.7 in pain can be exploited to develop novel cancer therapies. In this chapter, we illustrate the various aspects of Nav1.7 function in pain, cancer and CIPN, and outline therapeutic approaches.


Asunto(s)
Neoplasias , Canales de Sodio Activados por Voltaje , Humanos , Dolor/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción , Neoplasias/metabolismo
3.
Aging (Albany NY) ; 14(12): 5013-5022, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35759577

RESUMEN

OBJECTIVE: This study explored the effects and mechanisms of Huangqi Guizhi Wuwu Decoction on chemotherapy-induced neuropathic pain (CINP). METHODS: Bodyweight and related behavioral testing of the rat model were utilized to investigate the effects of Huangqi Guizhi Wuwu Decoction on CINP. ELISA was used to measure the levels of TNF-α, IL-1ß, and IL-6, in the serum of chronic CINP rats. Immunohistochemistry and Western blot analysis were performed to detect the expression of MAPK pathway related-proteins namely ERK1/2, p38, and JNK, and the expression of downstream essential proteins such as c-Fos, CREB, and NF-κB. RESULTS: Body weight and related behavioral testing of the rat model suggests that Huangqi Guizhi Wuwu Decoction can improve the slow weight gain of oxaliplatin-induced chronic CINP model rats and effectively prevent and treat oxaliplatin-induced regular CIPN rat model of hyperalgesia. It can also oppress the mechanical pain threshold, cold pain threshold, and heat pain threshold decreased. Furthermore, by ELISA, immunohistochemistry, and western blot analysis, we found that Huangqi Guizhi Wuwu Decoction can down-regulate the levels of TNF-α, IL-1ß, and IL-6 in the serum of chronic CINP rats induced by oxaliplatin. It also suppresses the expression of MAPK pathway related-proteins ERK1/2, p38, and JNK. This results in a decrease in the expression of downstream essential proteins, c-Fos, CREB, and Nf-κB. CONCLUSIONS: In conclusion, we found that Huangqi Guizhi Wuwu Decoction can combat nerve cell injury, reduce pain sensitization, and prevent and repair the damage of nerve cells in the oxaliplatin CINP model rats via TNFα/IL-1ß/IL-6/MAPK/NF-kB pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Neuralgia , Fármacos Neuroprotectores , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-6 , FN-kappa B/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Oxaliplatino/toxicidad , Ratas , Factor de Necrosis Tumoral alfa
4.
Cell Rep ; 38(13): 110597, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35354024

RESUMEN

Although features of ribosome assembly are shared between species, our understanding of the diversity, complexity, dynamics, and regulation of ribosome production in multicellular organisms remains incomplete. To gain insights into ribosome biogenesis in human cells, we perform a genome-wide loss-of-function screen combined with differential labeling of pre-existing and newly assembled ribosomes. These efforts identify two functionally uncharacterized genes, C1orf109 and SPATA5. We provide evidence that these factors, together with CINP and SPATA5L1, control a late step of human pre-60S maturation in the cytoplasm. Loss of either C1orf109 or SPATA5 impairs global protein synthesis. These results link ribosome assembly with neurodevelopmental disorders associated with recessive SPATA5 mutations. Based on these findings, we propose that the expanded repertoire of ribosome biogenesis factors likely enables multicellular organisms to coordinate multiple steps of ribosome production in response to different developmental and environmental stimuli.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Humanos , Fosfoproteínas/metabolismo , Ribosomas/metabolismo
5.
IBRO Neurosci Rep ; 10: 109-118, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34179865

RESUMEN

Human immunodeficiency virus (HIV) infection and antiretroviral therapy can independently induce HIV-associated neuropathic pain (HIV-NP). There is a dearth of drugs or therapeutic modalities that can alleviate HIV-NP. Smoked cannabis has been reported to improve pain measures in patients with neuropathic pain. Cannabis, phytocannabinoids, and the endocannabinoids such N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), produce some of their effects via cannabinoid receptors (CBRs). Endocannabinoids are degraded by various enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase. We searched PubMed, Google Scholar, clinicaltrials.gov and clinicaltrialsregister.eu using various key words and their combinations for published papers that studied HIV-NP and cannabis, cannabinoids, or endocannabinoids up to 27th December 2020. All original research articles that evaluated the efficacy of molecules that modulate the endocannabinoid system (ECS) for the prevention and/or treatment of pain in HIV-NP animal models and patients with HIV-NP were included. The PubMed search produced a total of 117 articles, whereas the Google Scholar search produced a total of 9467 articles. Amongst the 13 articles that fulfilled the inclusion criteria 11 articles were found in both searches whereas 2 articles were found in Google Scholar only. The clinicaltrials.gov and clinicaltrialsregister.eu searches produced five registered trials of which three were completed and with results. Ten preclinical studies found that the endocannabinoids (2-AG and AEA), synthetic mixed CB1R/CB2R agonist WIN 55,212-2, a CB2R-selective phytocannabinoid ß-caryophyllene, synthetic CB2R-selective agonists (AM1710, JWH015, JWH133 and Gp1a, but not HU308); FAAH inhibitors (palmitoylallylamide, URB597 and PF-3845) and a drug combination of indomethacin plus minocycline, which produces its effects in a CBR-dependent manner, either prevented the development of and/or attenuated established HIV-NP. Two clinical trials demonstrated greater efficacy of smoked cannabis over placebo in alleviating HIV-NP, whereas another clinical trial demonstrated that cannabidivarin, a cannabinoid that does not activate CBRs, did not reduce HIV-NP. The available preclinical results suggest that targeting the ECS for prevention and treatment of HIV-NP is a plausible therapeutic option. Clinical evidence shows that smoked cannabis alleviates HIV-NP. Further research is needed to find out if non-psychoactive drugs that target the ECS and are delivered by other routes than smoking could be useful as treatment options for HIV-NP.

6.
Cells ; 10(3)2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806325

RESUMEN

Chemotherapy-induced neuropathic pain (CINP) is a severe adverse effect of platinum- and taxane-derived anticancer drugs. The pathophysiology of CINP includes damage to neuronal networks and dysregulation of signal transduction due to abnormal Ca2+ levels. Therefore, methods that aid the recovery of neuronal networks could represent a potential treatment for CINP. We developed a mouse model of paclitaxel-induced peripheral neuropathy, representing CINP, to examine whether intrathecal injection of decursin could be effective in treating CINP. We found that decursin reduced capsaicin-induced intracellular Ca2+ levels in F11 cells and stimulated neurite outgrowth in a concentration-dependent manner. Decursin directly reduced mechanical allodynia, and this improvement was even greater with a higher frequency of injections. Subsequently, we investigated whether decursin interacts with the transient receptor potential vanilloid 1 (TRPV1). The web server SwissTargetPrediction predicted that TRPV1 is one of the target proteins that may enable the effective treatment of CINP. Furthermore, we discovered that decursin acts as a TRPV1 antagonist. Therefore, we demonstrated that decursin may be an important compound for the treatment of paclitaxel-induced neuropathic pain that functions via TRPV1 inhibition and recovery of damaged neuronal networks.


Asunto(s)
Benzopiranos/uso terapéutico , Butiratos/uso terapéutico , Activadores de Enzimas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/inducido químicamente , Paclitaxel/efectos adversos , Animales , Benzopiranos/farmacología , Butiratos/farmacología , Modelos Animales de Enfermedad , Activadores de Enzimas/farmacología , Humanos , Ratones
7.
J Pain Res ; 14: 681-691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732014

RESUMEN

INTRODUCTION: Chemotherapy-induced neuropathic pain (CINP) is one of the most common complications of chemotherapeutic drugs which limits the dose and duration of potentially life-saving anticancer treatment and compromises the quality of life of patients. Our previous studies have reported that molecular hydrogen (H2) can be used to prevent and treat various diseases. But the underlying mechanism remains unclear. The aim of the present study was to explore the effects of hydrogen-rich water on gut microbiota in CINP. METHODS: All C57BL/6J mice were divided into 4 groups: The group fed with normal drinking water and injected with saline (H2O + Saline), the group fed with normal drinking water and injected with oxaliplatin (H2O + OXA), the group fed with hydrogen-rich water and injected with saline (HW + Saline), and the group fed with hydrogen-rich water and injected with oxaliplatin (HW + OXA). The mechanical paw withdrawal threshold of the mice was tested on days 0, 5, 10, 15 and 20 after hydrogen-rich water treatment. On day 20, feces of mice from different groups were collected for microbial community diversity and structure analysis. The levels of inflammatory cytokines (TNF-α and IL-6), oxidative stress factors (OH- and ONOO-), lipopolysaccharide (LPS) and Toll-like receptor 4 (TLR4) were detected in dorsal root ganglia (DRG), L4-6 spinal cord segments and serum by enzyme-linked immunosorbent assay. The expression of TLR4 in DRG and spinal cords was determined by Western blot. RESULTS: The results illustrated that hydrogen-rich water could alleviate oxaliplatin-induced hyperalgesia, reduce the microbial diversity and alter the structure of gut microbiota, reverse the imbalance of inflammatory cytokines and oxidative stress, and decrease the expression of LPS and TLR4. CONCLUSION: Hydrogen-rich water may alleviate CINP by affecting the diversity and structure of the gut microbiota, and then the LPS-TLR4 pathway, which provides a direction for further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA