Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Talanta ; 281: 126879, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39293247

RESUMEN

The development of high-performance specific sensors is promising for the rapid detection of harmful residues in animal-derived foods. Recently, luminescent metal-organic framework/molecularly imprinted polymer (LMOF/MIP) materials have been developed as ideal candidates for the analysis of harmful residues. Here, we reported a simple fabrication protocol of paper-based chip through in-situ growth of LMOF on a negatively charged modified filter paper, a paper-based molecularly imprinting layer (FP@BA-Eu@MIP) was thereafter successfully prepared via the boronate affinity-based controllable oriented surface imprinting strategy. The paper-based chips obtained were used to construct a rapid test strip of tetracycline (TC). After addition of TC, significant fluorescence changes on the surface of the FP@BA-Eu@MIP paper-based chip could be observed from blue to red via inner filter effect and photo-induced electron transfer under the excitation of 360 nm. The adsorption kinetics was explored in detail. The presented strip exhibited satisfied selectiveness and sensitivity with a limit of detection of 8.47 µg L-1 for TC. It was confirmed that LMOF/MIP as a biomimetic recognition module can play a crucial role in enrichment and fluorescence response. This study provided a real application case for an in-situ fabricated fluorescence paper-based chip in rapidly detecting harmful residues.

2.
Food Res Int ; 194: 114931, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232543

RESUMEN

The snack food market has been changing to keep up with the growing demand for healthier products and, as a result, alternative products to traditional potato chips have been emerging to provide health-related benefits. Extrusion, frying, and baking are the main techniques used worldwide in the processing of snacks and are among the main reasons for the formation of toxic compounds induced by heat, such as acrylamide. This contaminant is formed during thermal processing in foods heated at high temperatures and rich in carbohydrates. Processed potato-based products have been pointed out as the main contributors to acrylamide dietary exposure. Many studies have been conducted on potato chips since the discovery of this contaminant in foods and research on the formation of acrylamide in snacks from other vegetables has begun to be conducted more recently. Thus, this review aims to present a detailed discussion on the occurrence of acrylamide in alternative vegetable snacks that are consumed as being healthier and to address relevant questions about the effectiveness of mitigation strategies that have been developed for these products. Through this research, it was observed that, depending on the vegetable, the levels of this contaminant can be quite variable. Alternative snacks, such as sweet potato, carrot and beetroot may also contain high levels of acrylamide and need to be monitored even more closely than potatoes snacks, as less information is available on these food products. Furthermore, various pretreatments (e.g. bleaching, immersion in solutions containing chemical substances) and processing conditions (heating methods, time, temperature) can reduce the formation of acrylamide (54-99 %) in alternative vegetable snacks.


Asunto(s)
Acrilamida , Bocadillos , Solanum tuberosum , Acrilamida/análisis , Solanum tuberosum/química , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Humanos , Calor , Culinaria/métodos
3.
Adv Colloid Interface Sci ; 332: 103276, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146580

RESUMEN

Acoustofluidic technologies that integrate acoustic waves and microfluidic chips have been widely used in bioparticle manipulation. As a representative technology, acoustic tweezers have attracted significant attention due to their simple manufacturing, contact-free operation, and low energy consumption. Recently, acoustic tweezers have enabled the efficient and smart manipulation of biotargets with sizes covering millimeters (such as zebrafish) and nanometers (such as DNA). In addition to acoustic tweezers, other related acoustofluidic chips including acoustic separating, mixing, enriching, and transporting chips, have also emerged to be powerful platforms to manipulate micro/nano bioparticles (cells in blood, extracellular vesicles, liposomes, and so on). Accordingly, some interesting applications were also developed, such as smart sensing. In this review, we firstly introduce the principles of acoustic tweezers and various related technologies. Second, we compare and summarize recent applications of acoustofluidics in bioparticle manipulation and sensing. Finally, we outlook the future development direction from the perspectives such as device design and interdisciplinary.


Asunto(s)
Acústica , Animales , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , ADN/química , Liposomas/química , Nanopartículas/química , Dispositivos Laboratorio en un Chip , Vesículas Extracelulares/química
4.
Food Chem ; 460(Pt 2): 140661, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089019

RESUMEN

This study investigated the effect of calcium chloride (CaCl2) combined with acetic acid (AA) pretreatment on the oil absorption of potato chips and explored the possible mechanisms influencing oil absorption. Results indicated that compared with hot water blanching, the combination of 0.3% CaCl2 blanching and AA soaking for 2-8 h pretreatment was found to reduce oil content by 10.52%-12.68% and significantly improve the crispness and color of fried potato chips. Microstructural and textural analyses revealed that the main reason for the reduction in oil content was the promotion of pectin gelation in the cell wall by CaCl2 and AA. However, it was observed that prolonged AA soaking time and high-concentration CaCl2 blanching led to an increase in total oil content and decrease in brittleness. Based on the results of surface roughness and moisture content analyses, it was suggested that the CaCl2 and AA pretreatments affected surface roughness and moisture content, thereby increasing oil absorption and reducing brittleness during frying.


Asunto(s)
Ácido Acético , Cloruro de Calcio , Culinaria , Solanum tuberosum , Ácido Acético/química , Solanum tuberosum/química , Cloruro de Calcio/química , Aceites de Plantas/química , Calor , Manipulación de Alimentos , Absorción
5.
Cell Rep Methods ; 4(8): 100831, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39111312

RESUMEN

Spatial transcriptomics workflows using barcoded capture arrays are commonly used for resolving gene expression in tissues. However, existing techniques are either limited by capture array density or are cost prohibitive for large-scale atlasing. We present Nova-ST, a dense nano-patterned spatial transcriptomics technique derived from randomly barcoded Illumina sequencing flow cells. Nova-ST enables customized, low-cost, flexible, and high-resolution spatial profiling of large tissue sections. Benchmarking on mouse brain sections demonstrates significantly higher sensitivity compared to existing methods at a reduced cost.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Encéfalo/metabolismo , Nanotecnología/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Sci Total Environ ; 951: 175626, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168345

RESUMEN

Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.


Asunto(s)
Oncorhynchus kisutch , Estrés Fisiológico , Animales , Oncorhynchus kisutch/fisiología , Oncorhynchus kisutch/genética , Cambio Climático , Salinidad , Monitoreo del Ambiente/métodos , Agua de Mar , Biomarcadores
7.
Heliyon ; 10(13): e33322, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091953

RESUMEN

The study aims to analyze and decompose the qualitative parameters of wood chips in Poland. The European Green Deal brings the new framework to support sustainability and elimination of emissions. The Wavelet coherence and Wavelet Discrete Decomposition are used for determination of relations among significant qualitative parameters. Thus, the possible uses are discussed. For the obvious relationship between moisture and calorific value there is evidence of strong correlation. The behaviour of these interrelations are different at frequencies in the long and short time. The wood chip price is inter-transmitter from moisture parameter to calorific value in a positive (in-phase) relationship. At both low and high frequencies there is evidence that the variables of moisture and calorific value are highly correlated. The transient effect of linkage is presented at values between 0.1 and 0.3 in coherence map. The empirical findings provide implication for local producers and policymakers.

8.
Cell Regen ; 13(1): 16, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101982

RESUMEN

Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. "Organs-on-chips: Intestine" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024. This standard specifies the scope, terminology, definitions, technical requirements, detection methods, and quality control in building the human intestinal model on a chip. The publication of this group standard will guide the institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of intestine-on-a-chip for translational applications.

9.
J Artif Organs ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134691

RESUMEN

Human body constitutes unique biological system containing specific fluid mechanics and biomechanics. Traditional cell culture techniques of 2D and 3D do not recapitulate these specific natures of the human system. In addition, they lack the spatiotemporal conditions of representing the cells. Moreover, they do not enable the study of cell-cell interactions in multiple cell culture platforms. Therefore, establishing biological system of dynamic cell culture was of great interest. Organs on chips systems were fabricated proving their concept to mimic specific organs functions. Therefore, it paves the way for validating new drugs and establishes mechanisms of emerging diseases. It has played a key role in validating suitable vaccines for Coronavirus disease (COVID-19). Herein, the concept of organs on chips, fabrication methodology and their applications are discussed.

10.
Heliyon ; 10(14): e34433, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149043

RESUMEN

The increasing demand for sustainable manufacturing has revived the interest in solid-state recycling (SSR) as a promising alternative method for aluminum waste. In this context, chips generated during machining processes constitute a substantial portion of aluminum waste, offering significant potential for recycling and mitigating waste. However, the machining chip morphology significantly impacts the properties of chip-based recycled parts. This review paper examines the current state-of-the-art solid-state recycling methods, focusing on hot forging, extrusion, equal channel angular pressing, friction stir extrusion and field-assisted sintering. It investigates the impact of aluminum chip morphology on the properties of the directly recycled material, emphasizing the chip machining consequence on the final quality of the product. Several studies reported that the strain and operating temperature are the most influential factors in SSR processes, followed by chip size with an average length of less than 4 mm. Yet, the heating time up to 3 h also had a major impact on chip weld strength. The findings highlighted the significance of aluminum chip morphology in improving the quality of recycled material. The properties of direct recycled samples primarily depend on chip weld strength and microstructure. Overall, this study presented a comprehensive overview of the current state of solid-state recycling and emphasized the significance of chip morphology in advancing the recycling process. Consequently, it equips researchers with a valuable resource for developing effective strategies for sustainable recycling of aluminum chips with high quality.

11.
Smart Med ; 3(2): e20240009, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39188702

RESUMEN

In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organs-on-chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.

12.
Bioengineering (Basel) ; 11(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199706

RESUMEN

Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid.

13.
Heliyon ; 10(14): e34672, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130449

RESUMEN

The influence of pre-treatments and different dehydrating temperatures on the drying dynamics, energy consumption, and quality attribute of yam chips was studied. Dehydration was executed employing a convectional oven dryer under four temperatures (50, 60, 70, and 80 °C) and 2.0 m/s air velocity. Yam chips were subjected to pre-treatment conditions of blanching (for 1, 2, 3, 4, and 5 min), citric acid (1 and 5 %), and ascorbic acid (1 and 5 %) solutions whereas, untreated yam chips samples served as the control. Dehydrated yam chips were further assessed for textural and colour properties. The drying rate was found to be faster at a higher temperature of 80 °C compared to lower temperatures of 50, 60, and 70 °C. The asymptotic model was established to be the suitable descriptive model for predicting moisture profile in the pre-treated yam chips based on highest R2 values (0.995-0.999), lowest χ2 values (4.422-18.498), and the root mean square error (RMSE) values (2.103-4.30). Pre-treatment and drying temperature had a significant (p < 0.05) impact on the hardness and colour of dehydrated yam chips. Blanching at 4 min yielded yam chips with most preferred texture (hardness: 81.3 N) and lightness (L*) in colour values (71.07 %) after drying compared to other pre-treated samples. The effective moisture diffusivity values of the pre-treated samples were in the range of 5.17294 × 10-9m2/s to 1.10143 × 10-8m2/s for 5 % citric acid samples at 50 °C and all pre-treated samples at 80 °C respectively. The general findings of the study indicated a least energy usage of 43.68 kWh as a cost-effective method of drying. Also, 4 min blanching, 5 % citric acid, and 1 % ascorbic acid at 80 °C were found to be the optimum conditions for pre-treating yam chips based on lower energy level consumption rates and improved sensory properties thus attributing to the quality of the dried yam chips.

14.
Front Physiol ; 15: 1425618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135710

RESUMEN

Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.

15.
Biosens Bioelectron ; 266: 116684, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39216206

RESUMEN

Co-culture spheroids mimic tumor architecture more accurately than traditional 2D cell cultures, but non-invasive, long-term tracking of live cells within these 3D models remains a challenge. This study addresses this critical need by developing a novel approach for live cell imaging in U-87/HUF co-culture spheroids. We introduce water-soluble, biocompatible red carbon dots (R-CDs) exhibiting exceptional stability and brightness (21% quantum yield) specifically designed for imaging within these 3D models. Furthermore, we designed a microfluidic chip with ellipsoid-shaped microwells to efficiently generate two distinct co-culture spheroid types: direct mixing and core-shell. R-CDs enabled non-invasive tracking of U-87 cancer cell location within these 3D models demonstrating their efficacy for long-term monitoring of live cells in cancer research. This R-CD and microfluidic technology has the potential to accelerate cancer drug discovery by enabling live cell studies in 3D tumor models.


Asunto(s)
Carbono , Técnicas de Cocultivo , Esferoides Celulares , Humanos , Esferoides Celulares/patología , Carbono/química , Línea Celular Tumoral , Puntos Cuánticos/química , Neoplasias/patología , Neoplasias/diagnóstico por imagen , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Materiales Biocompatibles/química , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Diseño de Equipo
16.
Food Chem ; 460(Pt 1): 140478, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032302

RESUMEN

Southern Chile native potatoes are an interesting raw material to produce novel snacks like colored potato chips. These novel products should be comprehensively evaluated for the presence of undesirable compounds such as acrylamide, 5-hydroxymethylfurfural and furan, the main neoformed contaminants in starchy rich fried foods. This study evaluated the neoformed contaminant levels and oil content on chips made from eleven Chilean potato accessions and compared them with commercial samples. The neoformed contaminant contents were related to Maillard reaction precursor levels (reducing sugars and asparagine) and secondary metabolites (phenolic compounds and carotenoids). Neoformed contaminants correlated well among them and were weakly correlated with reducing sugars and asparagine. Acrylamide level in native potato chips ranged from 738.2 to 1998.6 µg kg-1 while from 592.6 to 2390.5 µg kg-1 in commercial samples. Thus, there is need to implement neoformed contaminant mitigation strategies at different steps of the production chain of colored potato chips.


Asunto(s)
Acrilamida , Culinaria , Contaminación de Alimentos , Reacción de Maillard , Solanum tuberosum , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Contaminación de Alimentos/análisis , Acrilamida/análisis , Acrilamida/metabolismo , Chile , Calor , Metabolismo Secundario , Fenoles/metabolismo , Fenoles/análisis , Fenoles/química , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Carotenoides/química , Furaldehído/análogos & derivados
17.
Nutrients ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999832

RESUMEN

BACKGROUND: The differential effects of pecans versus other popular snack foods on appetite and blood markers of metabolism and satiety have not been well studied. This study investigated the effects of a single mid-morning snack of pecans or tortilla chips on subjective appetite, food intake, blood measures of hormones and metabolites, and resting energy expenditure. METHODS: Twenty participants with overweight and obesity were enrolled in a within-participants, randomized crossover trial. Participants had indwelling catheters placed for blood sampling and were fed a standardized breakfast, followed two hours later by a 250 kcal snack of either pecans or tortilla chips, and then by a self-selected lunch. Visual analog scale (VAS) appetite measures, blood markers, and energy expenditure were taken at intervals after food consumption. RESULTS: VAS ratings, energy, food intake and macronutrient composition did not differ between treatment conditions, but glucose and insulin were significantly more elevated after tortilla chips. Free fatty acids (FFA), triglycerides (TG), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1) were higher after consuming pecans compared to tortilla chips. CONCLUSIONS: Pecan consumption improves postprandial glucose and insulin profiles which would be beneficial to individuals at risk of developing type 2 diabetes. Further studies are needed to investigate whether increased relative secretion of PYY and GLP-1 after eating pecans versus tortilla chips may affect subjective appetite and energy intake if consumed chronically.


Asunto(s)
Apetito , Biomarcadores , Estudios Cruzados , Metabolismo Energético , Insulina , Obesidad , Sobrepeso , Bocadillos , Humanos , Masculino , Femenino , Adulto , Obesidad/sangre , Biomarcadores/sangre , Sobrepeso/sangre , Insulina/sangre , Glucemia/metabolismo , Péptido 1 Similar al Glucagón/sangre , Persona de Mediana Edad , Voluntarios Sanos , Ingestión de Alimentos/fisiología , Ingestión de Energía , Carbohidratos de la Dieta/administración & dosificación , Péptido YY/sangre , Periodo Posprandial , Adulto Joven
18.
GM Crops Food ; 15(1): 248-261, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39066641

RESUMEN

In the United States, regulatory review of genetically engineered microbes for agriculture falls under the Coordinated Framework for the Regulation of Biotechnology (CFRB). However, the lack of a centralized regulatory pathway and multiple oversight authorities can lead to uncertainty in regulatory review. Using three microbial-based technologies for agriculture as illustrative examples, this commentary identifies the weaknesses and challenges associated with the CFRB by assessing the current system and proposed changes to the system under a multi criteria decision analysis framework. In addition, it discusses opportunities for regulatory reform to improve clarity, efficiency, and public acceptance of genetically engineered microbes in agriculture under the CHIPS and Science Act and the 2022 Executive Order on the Bioeconomy.


Asunto(s)
Agricultura , Biotecnología , Ingeniería Genética , Biotecnología/legislación & jurisprudencia , Agricultura/legislación & jurisprudencia , Agricultura/métodos , Estados Unidos , Ingeniería Genética/legislación & jurisprudencia , Ingeniería Genética/métodos , Microorganismos Modificados Genéticamente , Humanos , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética
19.
Mater Today Bio ; 27: 101143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39070097

RESUMEN

Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.

20.
Int J Pharm ; 663: 124536, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39074648

RESUMEN

Vesicants are chemical warfare agents (CWAs) capable of causing severe skin damage and systemic toxicity. Melatonin, known for its anti-inflammatory and antioxidant properties, can mitigate the effects of these agents. Self-nano-emulsifying drug delivery systems (SNEDDS) containing a high melatonin concentration (5 %, 50 mg/g) were optimized using a quality-by-design approach from biocompatible, non-irritant excipients with a particle size of about 100 nm. The melatonin-loaded SNEDDS showed a 43-fold greater permeability than a conventional melatonin cream. Chemical stability at ambient temperature (25 °C) was maintained for one year. The preparation of optimised melatonin-loaded SNEDDS using a simple mixing method was compared to microfluidic micromixers. Mixing was successfully achieved using a 3D-printed (fused deposition modeling or stereolithography) T-shaped toroidal microfluidic chip (with a channel geometry optimized by computational fluid dynamics), resulting in a scalable, continuous process for the first time with a substantial reduction in preparation time compared to other conventional mixing approaches. No statistically significant differences were observed in the key quality attributes, such as particle size and melatonin loading, between mixing method till kinetic equilibrium solubility is reached and mixing using the 3D-printed micromixers. This scalable, continuous, cost-effective approach improves the overall efficiency of SNEDDS production, reduces the cost of quality control for multiple batches, and demonstrates the potential of continuous microfluidic manufacture with readily customizable 3D-printed micromixers at points of care, such as military bases.


Asunto(s)
Antioxidantes , Sistemas de Liberación de Medicamentos , Emulsiones , Melatonina , Microfluídica , Tamaño de la Partícula , Permeabilidad , Impresión Tridimensional , Absorción Cutánea , Melatonina/química , Melatonina/administración & dosificación , Melatonina/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Microfluídica/métodos , Absorción Cutánea/efectos de los fármacos , Excipientes/química , Estabilidad de Medicamentos , Solubilidad , Administración Cutánea , Piel/metabolismo , Piel/efectos de los fármacos , Composición de Medicamentos/métodos , Dispositivos Laboratorio en un Chip
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA