Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Bone Miner Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236220

RESUMEN

The cartilage growth plate is essential for maintaining skeletal growth; however, the mechanisms governing postnatal growth plate homeostasis are still poorly understood. Using approaches of molecular mouse genetics and spatial transcriptomics applied to formalin-fixed, paraffin-embedded (FFPE) tissues, we show that ADGRG6/GPR126, a cartilage-enriched adhesion G protein-coupled receptor (GPCR), is essential for maintaining slow-cycling resting zone cells, appropriate chondrocyte proliferation and differentiation, and growth plate homeostasis in mice. Constitutive ablation of Adgrg6 in osteochondral progenitor cells with Col2a1Cre leads to a shortened resting zone, formation of cell clusters within the proliferative zone, and an elongated hypertrophic growth plate, marked by limited expression of PTHrP but increased IHH signaling throughout the growth plate. Attenuation of Smoothened (SMO)-dependent hedgehog signaling restored the Adgrg6 deficiency-induced expansion of hypertrophic chondrocytes, confirming that IHH signaling can promote chondrocyte hypertrophy in a PTHrP-independent manner. In contrast, postnatal ablation of Adgrg6 in mature chondrocytes with AcanCreERT2, induced after the formation of the resting zone, does not affect PTHrP expression but causes an overall reduction of growth plate thickness marked by increased cell death specifically in the resting zone cells and a general reduction of chondrocyte proliferation and differentiation. Spatial transcriptomics reveals that ADGRG6 is essential for maintaining chondrocyte homeostasis by regulating osteogenic and catabolic genes in all the zones of the postnatal growth plates, potentially through positive regulation of SOX9 expression. Our findings elucidate the essential role of a cartilage-enriched adhesion GPCR in regulating cell proliferation and hypertrophic differentiation by regulation of PTHrP/IHH signaling, maintenance of slow-cycle resting zone chondrocytes, and safeguarding chondrocyte homeostasis in postnatal mouse growth plates.


The cartilage growth plate is an essential structure for skeletal growth, however, the mechanisms that govern growth plate homeostasis are still poorly understood. In this study, we showed that an adhesion G protein-coupled receptor (GPCR) named ADGRG6 plays an essential role in maintaining the slow-cycling cells in the resting zone of the growth plate and directing appropriate proliferation and differentiation of the growth plate chondrocytes. Using a technique called spatial transcriptomics, we compared the gene expression profiles in control and Adgrg6 mutant growth plates and found that ADGRG6 prevents premature hypertrophic differentiation of the growth plate chondrocytes by negatively regulating Indian Hedgehog (IHH) signaling. In summary, our findings highlighted the essential role of a cartilage-enriched GPCR in maintaining growth plate homeostasis through IHH signaling.

2.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995944

RESUMEN

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Asunto(s)
Densidad Ósea , Remodelación Ósea , Restricción Calórica , Hueso Esponjoso , Hueso Cortical , Animales , Hueso Cortical/patología , Hueso Cortical/metabolismo , Hueso Cortical/diagnóstico por imagen , Femenino , Hueso Esponjoso/patología , Hueso Esponjoso/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Adipogénesis , Adipocitos/metabolismo , Adipocitos/patología , Osteogénesis , Tamaño de los Órganos , Diferenciación Celular , Vía de Señalización Wnt , Microtomografía por Rayos X
3.
J Bone Miner Res ; 39(7): 821-825, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38988138

RESUMEN

An 18-month-old male presented with gross motor delay and poor growth (weight z-score -2.21, length z-score -4.26). Radiographs showed metaphyseal irregularities suggesting metaphyseal dysplasia and sagittal craniosynostosis. Biochemical evaluation supported hypophosphatemic rickets [serum phosphorus 2.3 mg/dL (reference range (RR) 4.3-6.8), alkaline phosphatase 754 unit/L (RR 156-369)] due to renal phosphate wasting (TmP/GFR 4.3 mg/dL, normal for age 4.3-6.8), with C-terminal fibroblast growth factor 23 (FGF23) 125 RU/mL (>90 during hypophosphatemia suggests FGF23-mediated hypophosphatemia). Treatment was initiated with calcitriol and phosphate. Genetic analysis showed a pathogenic variant of FGF23: c.527G > A (p.Arg176Gln) indicative of autosomal dominant hypophosphatemic rickets (ADHR). Consistent with reports linking iron deficiency with the ADHR phenotype, low ferritin was detected. Following normalization of ferritin level (41 ng/mL) with oral ferrous sulfate replacement, biochemical improvement was demonstrated (FGF23 69 RU/mL, phosphorus 5.0 mg/dL and alkaline phosphatase 228 unit/L). Calcitriol and phosphate were discontinued. Three years later, the patient demonstrated improved developmental milestones, linear growth (length Z-score -2.01), radiographic normalization of metaphyses, and stabilization of craniosynostosis. While the most common cause of hypophosphatemic rickets is X-linked hypophosphatemia, other etiologies should be considered as treatment differs. In ADHR, normalization of iron leads to biochemical and clinical improvement.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Humanos , Masculino , Lactante , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Raquitismo Hipofosfatémico/genética , Estatura , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen
4.
J Bone Miner Res ; 39(6): 729-736, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38640512

RESUMEN

Romosozumab treatment results in a transient early increase in bone formation and sustained decrease in bone resorption. Histomorphometric analyses revealed that the primary bone-forming effect of romosozumab is a transient early stimulation of modeling-based bone formation on cancellous and endocortical surfaces. Furthermore, preclinical studies have demonstrated that romosozumab may affect changes in the remodeling unit, resulting in positive bone balance. To further investigate the effects of romosozumab on bone balance, mo 12 (M12) and mo 2 (M2) (to analyze early effects) unpaired bone biopsies from the FRAME clinical trial were analyzed using remodeling site reconstruction to assess whether positive changes in bone balance on cancellous/endocortical surfaces may contribute to the progressive improvement in bone mass/structure and reduced fracture risk in osteoporotic women at high fracture risk. At M12, bone balance was higher with romosozumab vs placebo on cancellous (+6.1 vs +1.5 µm; P = .012) and endocortical (+5.2 vs -1.7 µm; P = .02) surfaces; higher bone balance was due to lower final erosion depth (40.7 vs 43.7 µm; P = .05) on cancellous surfaces and higher completed wall thickness (50.8 vs 47.5 µm; P = .037) on endocortical surfaces. At M2, the final erosion depth was lower on the endocortical surfaces (42.7 vs 50.7 µm; P = .021) and was slightly lower on the cancellous surfaces (38.5 vs 44.6 µm; P = .11) with romosozumab vs placebo. Sector analysis of early endocortical formative sites revealed higher osteoid thickness (29.9 vs 19.2 µm; P = .005) and mineralized wall thickness (18.3 vs 11.9 µm; P = .004) with romosozumab vs placebo. These evolving bone packets may reflect the early stimulation of bone formation that contributes to the increase in completed wall thickness at M12. These data suggest that romosozumab induces a positive bone balance due to its effects on bone resorption and formation at the level of the remodeling unit, contributing to the positive effects on bone mass, structure, and fracture risk.


Romosozumab treatment has a dual effect on bone, adding new bone and reducing bone loss. In the FRAME clinical trial, romosozumab increased the bone mass and strength and reduced fracture risk in postmenopausal women with osteoporosis. Addition of new bone occurs early in treatment and rapidly on cancellous and endocortical bone surfaces where bone resorption is not ongoing. However, it remains unclear if romosozumab affects bone loss or gain in areas where bone resorption is ongoing (remodeling units), contributing to a further positive bone balance. Here, we examined whether changes at the remodeling unit occur early (2 mo) and/or late (12 mo) in treatment by using bone biopsies from patients treated with romosozumab or placebo in FRAME. At M2, a combination of lower bone resorption and higher bone gain on endocortical surfaces resulted in a positive bone balance with romosozumab vs placebo. At M12, the bone balance was positive with romosozumab vs placebo due to lower bone resorption on cancellous surfaces and greater bone gain on endocortical surfaces. This demonstrates that romosozumab induces a positive bone balance at remodeling units early in treatment, leading to overall gains observed later, contributing to the positive effects of romosozumab on bone mass and structure.


Asunto(s)
Anticuerpos Monoclonales , Remodelación Ósea , Humanos , Femenino , Remodelación Ósea/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Anciano , Densidad Ósea/efectos de los fármacos , Persona de Mediana Edad
5.
JBMR Plus ; 8(5): ziae025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682000

RESUMEN

Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.

6.
J Bone Miner Res ; 39(6): 717-728, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38526976

RESUMEN

Currently available biotherapeutics for the treatment of osteoporosis lack explicit mechanisms for bone localization, potentially limiting efficacy and inducing off-target toxicities. While various strategies have been explored for targeting the bone surface, critical aspects remain poorly understood, including the optimal affinity ligand, the role of binding avidity and circulation time, and, most importantly, whether or not this strategy can enhance the functional activity of clinically relevant protein therapeutics. To investigate, we generated fluorescent proteins (eg, mCherry) with site-specifically attached small molecule (bisphosphonate) or peptide (deca-aspartate, D10) affinity ligands. While both affinity ligands successfully anchored fluorescent protein to the bone surface, quantitative radiotracing revealed only modest femoral and vertebral accumulation and suggested a need for enhanced circulation time. To achieve this, we fused mCherry to the Fc fragment of human IgG1 and attached D10 peptides to each C-terminus. The mCherry-Fc-D10 demonstrated an ~80-fold increase in plasma exposure and marked increases in femoral and vertebral accumulation (13.6% ± 1.4% and 11.4% ± 1.3% of the injected dose/g [%ID/g] at 24 h, respectively). To determine if bone surface targeting could enhance the efficacy of a clinically relevant therapeutic, we generated a bone-targeted sclerostin-neutralizing antibody, anti-sclerostin-D10. The targeted antibody demonstrated marked increases in bone accumulation and retention (20.9 ± 2.5% and 19.5 ± 2.5% ID/g in femur and vertebrae at 7 days) and enhanced effects in a murine model of ovariectomy-induced bone loss (bone volume/total volume, connectivity density, and structure model index all increased [P < .001] vs untargeted anti-sclerostin). Collectively, our results indicate the importance of both bone affinity and circulation time in achieving robust targeting of therapeutic proteins to the bone surface and suggest that this approach may enable lower doses and/or longer dosing intervals without reduction in biotherapeutic efficacy. Future studies will be needed to determine the translational potential of this strategy and its potential impact on off-site toxicities.


Several biologic therapies have been approved for osteoporosis, but they lack means of localization to bone tissue, potentially limiting their efficacy and leading to off-target toxicities. This manuscript investigates strategies for targeting biotherapeutics to the bone surface and asks the question of whether or not this approach can enhance functional activity and allow for lower or less frequent dosing. To define the key determinants of bone surface targeting, we begin by synthesizing fluorescent model proteins with different bone targeting tags. We show that even 1 tag is enough to make the surface of the femur and vertebrae fluorescent following systemic administration. The results are relatively modest at first, but when we combine the bone targeting tag with a second modification that makes the protein circulate in the body for a longer period of time, we observe a huge increase in bone surface delivery. We then synthesize a bone surface targeted version of a sclerostin-inhibiting antibody and show that it is more effective than the untargeted antibody and provides near complete protection of bone density despite relatively low dose. Our findings could have translational implications for existing bone therapies and help guide design of future strategies for optimized bone surface targeting.


Asunto(s)
Anticuerpos Neutralizantes , Animales , Humanos , Femenino , Anticuerpos Neutralizantes/farmacología , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos , Proteínas Luminiscentes/metabolismo , Proteína Fluorescente Roja , Fémur/patología , Fémur/efectos de los fármacos , Fémur/metabolismo , Sistemas de Liberación de Medicamentos , Difosfonatos/farmacología , Péptidos y Proteínas de Señalización Intercelular
7.
JBMR Plus ; 7(10): e10796, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808393

RESUMEN

Degenerative osteoarthritis (OA) is recognized as an early-onset comorbidity of X-linked hypophosphatemia (XLH), contributing to pain and stiffness and limiting range of motion and activities of daily living. Here, we extend prior findings describing biochemical and cellular changes of articular cartilage (AC) in the phosphate-wasting environment of XLH to determine the impact of these changes on the biomechanical properties of AC in compression and potential role in the etiology of OA. We hypothesize that despite increased proteoglycan biosynthesis, disruption of the mineralized zone of AC impacts the mechanical properties of cartilage that function to accommodate loads and that therapeutic restoration of this zone will improve the mechanical properties of AC. Data were compared between three groups: wild type (WT), Hyp, and Hyp mice treated with calcitriol and oral phosphate. EPIC microCT confirmed AC mineral deficits and responsiveness to therapy. MicroCT of the Hyp subchondral bone plate revealed that treatment improved trabecular bone volume (BV/TV) but remained significantly lower than WT mice in other trabecular microstructures (p < 0.05). Microindentation AC studies revealed that, compared with WT mice, the mean stiffness of tibial AC was significantly lower in untreated Hyp mice (2.65 ± 0.95 versus 0.87 ± 0.33 N/mm, p < 0.001) and improved with therapy (2.15 + 0.38 N/mm) to within WT values. Stress relaxation of AC under compressive loading displayed similar biphasic relaxation time constants (Taufast and Tauslow) between controls and Hyp mice, although Tauslow trended toward slowed relaxation times. In addition, Taufast and Tauslow times correlated with peak load in WT mice (r = 0.80; r = 0.78, respectively), whereas correlation coefficient values for Hyp mice (r = 0.46; r = 0.21) improved with treatment (r = 0.71; r = 0.56). These data provide rationale for therapies that both preserve AC stiffness and recovery from compression. The Hyp mouse also provides unique insight into determinants of structural stiffness and the viscoelastic properties of AC in the progression of OA. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
JBMR Plus ; 7(10): e10802, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808400

RESUMEN

Activating parathyroid hormone (PTH)/PTH-related Peptide (PTHrP) receptor (PTH1R) mutations causes Jansen's metaphyseal chondrodysplasia (JMC), a rare disease characterized by growth plate abnormalities, short stature, and PTH-independent hypercalcemia. Previously generated transgenic JMC mouse models, in which the human PTH1R allele with the H223R mutation (H223R-PTH1R) is expressed in osteoblasts via type Ia1 collagen or DMP1 promoters cause excess bone mass, while expression of the mutant allele via the type IIa1 collagen promoter results in only minor growth plate changes. Thus, neither transgenic JMC model adequately recapitulates the human disease. We therefore generated "humanized" JMC mice in which the H223R-PTH1R allele was expressed via the endogenous mouse Pth1r promoter and, thus, in all relevant target tissues. Founders with the H223R allele typically died within 2 months without reproducing; several mosaic male founders, however, lived longer and produced F1 H223R-PTH1R offspring, which were small and exhibited marked growth plate abnormalities. Serum calcium and phosphate levels of the mutant mice were not different from wild-type littermates, but serum PTH and P1NP were reduced significantly, while CTX-1 and CTX-2 were slightly increased. Histological and RNAscope analyses of the mutant tibial growth plates revealed markedly expanded zones of type II collagen-positive, proliferating/prehypertrophic chondrocytes, abundant apoptotic cells in the growth plate center and a progressive reduction of type X collagen-positive hypertrophic chondrocytes and primary spongiosa. The "humanized" H223R-PTH1R mice are likely to provide a more suitable model for defining the JMC phenotype and for assessing potential treatment options for this debilitating disease of skeletal development and mineral ion homeostasis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
J Bone Miner Res ; 38(12): 1846-1855, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37877440

RESUMEN

Postnatally, severe vitamin D deficiency commonly results in rickets as well as potential defects in tooth mineralization. The effects of milder deficiency on oral health outcomes later in life are still unclear. This study used micro-computed tomography (µCT), energy dispersive X-ray analysis (EDX), and Raman spectroscopy to investigate mineral density, total density, and elemental composition of enamel and dentine in 63 exfoliated primary incisors from participants with known 25-hydroxyvitamin D levels (25-OHD) at birth. No differences in mineralization and chemical composition using µCT and EDX analysis were observed irrespective of 25-OHD status. Subtle structural differences were observed via Raman spectroscopy, with more crystalline enamel observed in those with sufficient 25-OHD at birth. Although subtle, the differences seen suggest further attention should be given to children with known milder levels of vitamin D deficiency in early life. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Niño , Recién Nacido , Humanos , Microtomografía por Rayos X , Minerales , Diente Primario , Densidad Ósea
10.
JBMR Plus ; 7(9): e10788, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701149

RESUMEN

Hypervitaminosis D as a cause of hypercalcemia may be due to vitamin D intoxication, granulomatous diseases, or abnormalities of vitamin D metabolism. The CYP24A1 gene encodes for the 24-hydroxylase enzyme, which is responsible for the catabolism of 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D). Mutations in CYP24A1 can result in elevated 1,25(OH)2D causing parathyroid hormone (PTH)-independent hypercalcemia, hypercalciuria, nephrolithiasis, and nephrocalcinosis. We present the cases of two siblings exhibiting hypercalcemia secondary to a CYP24A1 loss-of-function mutation. Case 1 presented initially with PTH-dependent hypercalcemia, with localization of a left upper parathyroid adenoma on parathyroid technetium sestamibi (99mTc-MIBI) uptake study. Despite parathyroidectomy (180 mg adenoma), hypercalcemia, hypercalciuria, and low normal PTH levels persisted. A repeat parathyroid 99mTc-MIBI uptake study localized a second adenoma and a right inferior parathyroidectomy was performed (170 mg adenoma). PTH subsequently became undetectable, however hypercalcemia and hypercalciuria persisted. A new presentation of PTH-independent hypercalcemia found to be secondary to a CYP24A1 loss-of-function mutation in his sibling, Case 2, signaled the underlying cause. Cascade testing confirmed both siblings were homozygous for the pathogenic variant c.1186C>T, p.Arg396Trp (R396W) of CYP24A1 (NM_000782.5). In clinical practice CYP24A1 loss-of-function mutations should be considered in patients presenting with PTH-independent hypercalcemia, hypercalciuria, and 1,25(OH)2D levels in the upper normal or elevated range. Although in our case assays of 24,25(OH)2D were not available, calculation of the 25(OH)D:24,25(OH)2D ratio can assist in the diagnostic process. Possible treatments to manage the risk of hypercalcemia in patients with a CYP24A1 loss-of-function mutation include avoidance of vitamin D oversupplementation and excessive sun exposure. Hydration and bisphosphonate therapy can be useful in managing the hypercalcemia. Although not utilized in our cases, treatment with ketoconazole, fluconazole, and rifampicin have been described as potential therapeutic options. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
J Bone Miner Res ; 38(11): 1654-1664, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578099

RESUMEN

Tumor-induced osteomalacia (TIO) is an ultra-rare disease caused by tumors that secrete fibroblast growth factor 23, leading to chronic hypophosphatemia, poor skeletal health, and impaired physical function. In a phase 2 trial (UX023T-CL201; NCT02304367; n = 14), 48 weeks of burosumab treatment restored phosphate homeostasis, with improvements in skeletal health, functional mobility, and patient-reported pain, fatigue, and health-related quality of life (HRQL) (SF-36 v2). Here, we report an exploratory mixed-methods analysis of change from baseline after 144 weeks of burosumab treatment alongside qualitative data from exit interviews with 8 of 14 trial participants to evaluate meaningful treatment effects from a patient perspective. The interview subset (n = 8) reported pain and fatigue and compromised HRQL at baseline. In the interviews, participants reported that compromised HRQL and pain were the most important aspects of the disease to treat; both were considered more bothersome than fatigue and compromised physical function and activities of daily living. Improvements in pain and fatigue after treatment were reported, some of which achieved statistically and/or clinically meaningful thresholds. Furthermore, improvements in SF-36 v2 scores were most pronounced in the Physical Component Score and its Physical Function and Bodily Pain domains. Overall, the interview subset provided descriptions of symptomatic improvement and its clinical meaningfulness, including physical function, participation in activities of daily living, and mental well-being. Thus, this exploratory mixed-methods analysis provides deeper understanding of patients' perception of clinical meaningfulness beyond that articulated in validated patient-reported outcome instruments. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteomalacia , Calidad de Vida , Humanos , Adulto , Actividades Cotidianas , Osteomalacia/tratamiento farmacológico , Fatiga/tratamiento farmacológico , Fatiga/etiología , Dolor , Minerales , Medición de Resultados Informados por el Paciente , Factores de Crecimiento de Fibroblastos
12.
J Bone Miner Res ; 38(9): 1364-1385, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329499

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic condition characterized by altered skeletal development and extraskeletal bone formation. All cases of FOP are caused by mutations in the type I bone morphogenetic protein (BMP) receptor gene ACVR1 that result in overactivation of the BMP signaling pathway. Activation of the wild-type ACVR1 kinase requires assembly of a tetrameric type I and II BMP receptor complex followed by phosphorylation of the ACVR1 GS domain by type II BMP receptors. Previous studies showed that the FOP-mutant ACVR1-R206H required type II BMP receptors and presumptive glycine/serine-rich (GS) domain phosphorylation for overactive signaling. Structural modeling of the ACVR1-R206H mutant kinase domain supports the idea that FOP mutations alter the conformation of the GS domain, but it is unclear how this leads to overactive signaling. Here we show, using a developing zebrafish embryo BMP signaling assay, that the FOP-mutant receptors ACVR1-R206H and -G328R have reduced requirements for GS domain phosphorylatable sites to signal compared to wild-type ACVR1. Further, ligand-independent and ligand-dependent signaling through the FOP-mutant ACVR1 receptors have distinct GS domain phosphorylatable site requirements. ACVR1-G328R showed increased GS domain serine/threonine requirements for ligand-independent signaling compared to ACVR1-R206H, whereas it exhibited reduced serine/threonine requirements for ligand-dependent signaling. Remarkably, while ACVR1-R206H does not require the type I BMP receptor partner, Bmpr1, to signal, a ligand-dependent GS domain mutant of ACVR1-R206H could signal independently of Bmpr1 only when Bmp7 ligand was overexpressed. Of note, unlike human ACVR1-R206H, the zebrafish paralog Acvr1l-R203H does not show increased signaling activity. However, in domain-swapping studies, the human kinase domain, but not the human GS domain, was sufficient to confer overactive signaling to the Acvr1l-R203H receptor. Together these results reflect the importance of GS domain activation and kinase domain functions in regulating ACVR1 signaling and identify mechanisms of reduced regulatory constraints conferred by FOP mutations. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Miositis Osificante , Animales , Humanos , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Ligandos , Mutación/genética , Miositis Osificante/genética , Miositis Osificante/metabolismo , Transducción de Señal/genética , Pez Cebra/metabolismo
13.
J Bone Miner Res ; 38(6): 907-917, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36970776

RESUMEN

Familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2) are due to loss- and gain-of-function mutations, respectively, of the GNA11 gene that encodes the G protein subunit Gα11, a signaling partner of the calcium-sensing receptor (CaSR). To date, four probands with FHH2-associated Gα11 mutations and eight probands with ADH2-associated Gα11 mutations have been reported. In a 10-year period, we identified 37 different germline GNA11 variants in >1200 probands referred for investigation of genetic causes for hypercalcemia or hypocalcemia, comprising 14 synonymous, 12 noncoding, and 11 nonsynonymous variants. The synonymous and noncoding variants were predicted to be benign or likely benign by in silico analysis, with 5 and 3, respectively, occurring in both hypercalcemic and hypocalcemic individuals. Nine of the nonsynonymous variants (Thr54Met, Arg60His, Arg60Leu, Gly66Ser, Arg149His, Arg181Gln, Phe220Ser, Val340Met, Phe341Leu) identified in 13 probands have been reported to be FHH2- or ADH2-causing. Of the remaining nonsynonymous variants, Ala65Thr was predicted to be benign, and Met87Val, identified in a hypercalcemic individual, was predicted to be of uncertain significance. Three-dimensional homology modeling of the Val87 variant suggested it was likely benign, and expression of Val87 variant and wild-type Met87 Gα11 in CaSR-expressing HEK293 cells revealed no differences in intracellular calcium responses to alterations in extracellular calcium concentrations, consistent with Val87 being a benign polymorphism. Two noncoding region variants, a 40bp-5'UTR deletion and a 15bp-intronic deletion, identified only in hypercalcemic individuals, were associated with decreased luciferase expression in vitro but no alterations in GNA11 mRNA or Gα11 protein levels in cells from the patient and no abnormality in splicing of the GNA11 mRNA, respectively, confirming them to be benign polymorphisms. Thus, this study identified likely disease-causing GNA11 variants in <1% of probands with hypercalcemia or hypocalcemia and highlights the occurrence of GNA11 rare variants that are benign polymorphisms. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hipercalcemia , Hipocalcemia , Humanos , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipercalcemia/genética , Calcio/metabolismo , Células HEK293 , Mutación/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo
14.
J Bone Miner Res ; 38(1): 144-153, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342191

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a serious health problem affecting 3% of live births all over the world. Many loci associated with AIS have been identified by previous genome wide association studies, but their biological implication remains mostly unclear. In this study, we evaluated the AIS-associated variants in the 7p22.3 locus by combining in silico, in vitro, and in vivo analyses. rs78148157 was located in an enhancer of UNCX, a homeobox gene and its risk allele upregulated the UNCX expression. A transcription factor, early growth response 1 (EGR1), transactivated the rs78148157-located enhancer and showed a higher binding affinity for the risk allele of rs78148157. Furthermore, zebrafish larvae with UNCX messenger RNA (mRNA) injection developed body curvature and defective neurogenesis in a dose-dependent manner. rs78148157 confers the genetic susceptibility to AIS by enhancing the EGR1-regulated UNCX expression. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Estudio de Asociación del Genoma Completo , Escoliosis , Animales , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Escoliosis/genética , Factores de Transcripción/genética , Pez Cebra/genética
15.
J Bone Miner Res ; 38(2): 229-247, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161343

RESUMEN

Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Densidad Ósea , Huesos , Densidad Ósea/genética
16.
JBMR Plus ; 6(11): e10672, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36398111

RESUMEN

X-linked hypophosphatemia (XLH) is a rare genetic disorder that disrupts skeletal and dental mineralization. In addition to rickets in children, XLH patients also have frequent spontaneous dental abscesses that increase the risk of tooth loss and may lead to facial cellulitis. Hypomineralized and hypoplastic dentin is the main driver of these infections. Conventional treatment (CT) of XLH improves this tissue defect and reduces the occurrence of dental abscesses. Burosumab is a recent treatment for XLH that targets excess circulating fibroblast growth factor 23 (FGF23), and its benefits on rickets have been demonstrated. It is not yet known whether burosumab improves dental manifestations of XLH. The main objective of our study was to compare the incidence of dental abscesses with XLH treated with either CT or burosumab. In this monocentric retrospective study, we measured and compared the incidence of dental abscess in children with XLH treated with either CT or burosumab, followed at our dental center for at least 1 year. The primary endpoint was the number of dental abscesses per month of dental follow-up. A total of 71 children were included in the study, with a mean ± standard deviation (SD) age at the start of dental follow-up of 7.86 ± 3.76. Thirty-eight children were treated with CT (53.5%) and 33 with burosumab (46.5%). All children treated with burosumab had previously been treated with CT. The mean number of dental abscesses per month of dental follow-up was significantly reduced in the burosumab group compared with the CT group (0.01 versus 0.04; p = 0.04). Burosumab treatment appears to be associated with a reduction in the number of dental abscesses in XLH children, compared with CT. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

17.
J Bone Miner Res ; 37(11): 2351-2372, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053960

RESUMEN

Both medical and surgical therapy represent potential management options for patients with asymptomatic primary hyperparathyroidism (PHPT). Because uncertainty remains regarding both medical and surgical therapy, this systematic review addresses the efficacy and safety of medical therapy in asymptomatic patients or symptomatic patients who decline surgery and surgery in asymptomatic patients. We searched Medline, Embase, Cochrane Central Register of Controlled Trials, and PubMed from inception to December 2020, and included randomized controlled trials in patients with PHPT that compared nonsurgical management with medical therapy versus without medical therapy and surgery versus no surgery in patients with asymptomatic PHPT. For surgical complications we included observational studies. Paired reviewers addressed eligibility, assessed risk of bias, and abstracted data for patient-important outcomes. We conducted random-effects meta-analyses to pool relative risks and mean differences with 95% confidence intervals and used Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) to assess quality of evidence for each outcome. For medical therapy, 11 trials reported in 12 publications including 438 patients proved eligible: three addressed alendronate, one denosumab, three cinacalcet, two vitamin D, and two estrogen therapy. Alendronate, denosumab, vitamin D, and estrogen therapy all increased bone density. Cinacalcet probably reduced serum calcium and parathyroid hormone (PTH) levels. Cinacalcet and vitamin D may have a small or no increase in overall adverse events. Very-low-quality evidence raised the possibility of an increase in serious adverse events with alendronate and denosumab. The trials also provided low-quality evidence for increased bleeding and mastalgia with estrogen therapy. For surgery, six trials presented in 12 reports including 441 patients proved eligible. Surgery achieved biochemical cure in 96.1% (high quality). We found no convincing evidence supporting an impact of surgery on fracture, quality of life, occurrence of kidney stones, and renal function, but the evidence proved low or very low quality. Surgery was associated with an increase in bone mineral density. For patients with symptomatic and asymptomatic PHPT, who are not candidates for parathyroid surgery, cinacalcet probably reduced serum calcium and PTH levels; anti-resorptives increased bone density. For patients with asymptomatic PHPT, surgery usually achieves biochemical cure. These results can help to inform patients and clinicians regarding use of medical therapy and surgery in PHPT. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hiperparatiroidismo Primario , Humanos , Cinacalcet , Hiperparatiroidismo Primario/tratamiento farmacológico , Hiperparatiroidismo Primario/cirugía , Alendronato , Calcio , Calidad de Vida , Denosumab , Ensayos Clínicos Controlados Aleatorios como Asunto , Hormona Paratiroidea , Vitamina D , Estrógenos
18.
J Bone Miner Res ; 37(11): 2277-2287, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054133

RESUMEN

Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hueso Cortical , Tibia , Humanos , Animales , Ratones , Femenino , Tibia/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Osteogénesis/fisiología , Ratones Endogámicos C57BL , Soporte de Peso/fisiología
19.
J Bone Miner Res ; 37(12): 2568-2585, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054621

RESUMEN

This clinical practice guideline addresses the prevention, diagnosis, and management of hypoparathyroidism (HypoPT) and provides evidence-based recommendations. The HypoPT task forces included four teams with a total of 50 international experts including representatives from the sponsoring societies. A methodologist (GG) and his team supported the taskforces and conducted the systematic reviews. A formal process following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology and the systematic reviews provided the structure for seven of the guideline recommendations. The task force used a less structured approach based on narrative reviews for 20 non-GRADEd recommendations. Clinicians may consider postsurgical HypoPT permanent if it persists for >12 months after surgery. To predict which patients will not develop permanent postsurgical HypoPT, we recommend evaluating serum PTH within 12 to 24 hours post total thyroidectomy (strong recommendation, moderate quality evidence). PTH > 10 pg/mL (1.05 pmol/L) virtually excludes long-term HypoPT. In individuals with nonsurgical HypoPT, genetic testing may be helpful in the presence of a positive family history of nonsurgical HypoPT, in the presence of syndromic features, or in individuals younger than 40 years. HypoPT can be associated with complications, including nephrocalcinosis, nephrolithiasis, renal insufficiency, cataracts, seizures, cardiac arrhythmias, ischemic heart disease, depression, and an increased risk of infection. Minimizing complications of HypoPT requires careful evaluation and close monitoring of laboratory indices. In patients with chronic HypoPT, the panel suggests conventional therapy with calcium and active vitamin D metabolites as first-line therapy (weak recommendation, low-quality evidence). When conventional therapy is deemed unsatisfactory, the panel considers the use of PTH. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hipoparatiroidismo , Nefrocalcinosis , Humanos , Hipoparatiroidismo/tratamiento farmacológico , Huesos , Calcio de la Dieta
20.
J Bone Miner Res ; 37(11): 2391-2403, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054638

RESUMEN

Since the last international guidelines were published in 2014 on the evaluation and management of primary hyperparathyroidism (PHPT), new information has become available with regard to evaluation, diagnosis, epidemiology, genetics, classical and nonclassical manifestations, surgical and nonsurgical approaches, and natural history. To provide the most current summary of these developments, an international group, consisting of over 50 experts in these various aspects of PHPT, was convened. This paper provides the results of the task force that was assigned to review the information on the management of PHPT. For this task force on the management of PHPT, two questions were the subject of systematic reviews using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) methodology. The full report addressing surgical and nonsurgical management of PHPT, utilizing the GRADE methodology, is published separately in this series. In this report, we summarize the results of that methodological review and expand them to encompass a much larger body of new knowledge that did not specifically fit the criteria of the GRADE methodology. Together, both the systematic and narrative reviews of the literature, summarized in this paper, give the most complete information available to date. A panel of experts then considered the last set of international guidelines in light of the newer data and assessed the need for their revision. This report provides the evidentiary background to the guidelines report. In that report, evidence from all task forces is synthesized into a summary statement and revised guidelines for the evaluation and management of PHPT. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hiperparatiroidismo Primario , Humanos , Hiperparatiroidismo Primario/terapia , Revisiones Sistemáticas como Asunto , Hormona Paratiroidea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA