Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567476

RESUMEN

Astrocyte activation and proliferation contribute to glial scar formation during spinal cord injury (SCI), which limits nerve regeneration. The long noncoding RNAs (lncRNAs) are involved in astrocyte proliferation and act as novel epigenetic regulators. Here, we found that lncRNA-LOC100909675 (LOC9675) expression promptly increased after SCI and that reducing its expression decreased the proliferation and migration of the cultured spinal astrocytes. Depletion of LOC9675 reduced astrocyte proliferation and facilitated axonal regrowth after SCI. LOC9675 mainly localized in astrocytic nuclei. We used RNA-seq to analyze gene expression profile alterations in LOC9675-depleted astrocytes and identified the cyclin-dependent kinase 1 (Cdk1) gene as a hub candidate. Our RNA pull-down and RNA immunoprecipitation assays showed that LOC9675 directly interacted with the transcriptional regulator CCCTC-binding factor (CTCF). Dual-luciferase reporter and chromatin immunoprecipitation assays, together with downregulated/upregulated expression investigation, revealed that CTCF is a novel regulator of the Cdk1 gene. Interestingly, we found that with the simultaneous overexpression of CTCF and LOC9675 in astrocytes, the Cdk1 transcript was restored to the normal level. We then designed the deletion construct of LOC9675 by removing its interacting region with CTCF and found this effect disappeared. A transcription inhibition assay using actinomycin D revealed that LOC9675 could stabilize Cdk1 mRNA, while LOC9675 depletion or binding with CTCF reduced Cdk1 mRNA stability. These data suggest that the cooperation between CTCF and LOC9675 regulates Cdk1 transcription at a steady level, thereby strictly controlling astrocyte proliferation. This study provides a novel perspective on the regulation of the Cdk1 gene transcript by lncRNA LOC9675.

2.
Heliyon ; 9(2): e13195, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36798768

RESUMEN

Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.

3.
Matrix Biol Plus ; 12: 100088, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34805821

RESUMEN

The RUNX2 transcription factor is a key regulator for the development of cartilage and bone. Global or resting chondrocyte-specific deletion of the Runx2 gene results in failure of chondrocyte hypertrophy, endochondral ossification, and perinatal lethality. The terminally mature hypertrophic chondrocyte regulates critical steps of endochondral ossification. Importantly, expression of the Runx2 gene starts in the resting chondrocyte and increases progressively, reaching the maximum level in hypertrophic chondrocytes. However, the RUNX2 role after chondrocyte hypertrophy remains unknown. To answer this question, we deleted the Runx2 gene specifically in hypertrophic chondrocytes using the Col10-Cre line. Mice lacking the Runx2 gene in hypertrophic chondrocytes (Runx2HC/HC ) survive but exhibit limb dwarfism. Interestingly, the length of the hypertrophic chondrocyte zone is doubled in the growth plate of Runx2HC/HC mice. Expression of pro-apoptotic Bax decreased significantly while anti-apoptotic Bcl2 remains unchanged leading to a four-fold increase in the Bcl2/Bax ratio in mutant mice. In line with this, a significant reduction in apoptosis of Runx2HC/HC hypertrophic chondrocyte is noted. A large amount of cartilage matrix is present in the long bones that extend toward the diaphyseal region of Runx2HC/HC mice. This is not due to enhanced synthesis of the cartilage matrix as the expression of both collagen type 2 and aggrecan were comparable among Runx2HC/HC and WT littermates. Our qPCR analysis demonstrates the increased amount of cartilage matrix is due to impaired expression of cartilage degrading enzymes such as metalloproteinase and aggrecanase as well as tissue inhibitor of metalloproteinases. Moreover, a significant decrease of TRAP positive chondroclasts was noted along the cartilage islands in Runx2HC/HC mice. Consistently, qPCR data showed an 81% reduction in the Rankl/Opg ratio in Runx2HC/HC littermates, which is inhibitory for chondroclast differentiation. Finally, we assess if increase cartilage matrix in Runx2HC/HC mice serves as a template for bone and mineral deposition using micro-CT and Von Kossa. The mutant mice exhibit a significant increase in trabecular bone mass compared to littermates. In summary, our findings have uncovered a novel role of Runx2 in apoptosis of hypertrophic chondrocytes and degradation of cartilage matrix during endochondral ossification.

4.
Acta Pharm Sin B ; 11(5): 1148-1157, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34094825

RESUMEN

As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO-H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.

5.
Gene Rep ; 22: 101012, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398248

RESUMEN

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

6.
Toxicol Rep ; 7: 583-595, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426239

RESUMEN

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.

7.
Autophagy ; 16(4): 775-776, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32079445

RESUMEN

For the last two decades there has been wide ranging debate about the status of macroautophagy during mitosis. Because metazoan cells undergo an "open" mitosis in which the nuclear envelope breaks down, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. While many studies have agreed that the number of autophagosomes is greatly reduced in cells undergoing mitosis, there has been no consensus on whether this reflects decreased autophagosome synthesis or increased autophagosome degradation. Reviewing the literature we were concerned that many studies relied too heavily on autophagy assays that were simply not appropriate for a relatively brief event such as mitosis. Using highly dynamic omegasome markers we have recently shown unequivocally that autophagosome synthesis is repressed at the onset of mitosis and is restored once cell division is complete. This is accomplished by CDK1, the master regulator of mitosis, taking over the function of MTORC1, to ensure autophagy is repressed during mitosis.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Macroautofagia/fisiología , Mitosis/fisiología , Animales , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos
8.
Cell Cycle ; 14(12): 1908-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25970706

RESUMEN

Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the ß-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21(Cip1) level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/metabolismo , Fibroblastos/metabolismo , Vía de Señalización Wnt , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular , Roturas del ADN de Doble Cadena , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Homeostasis , Humanos , MAP Quinasa Quinasa 1/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , beta Catenina/metabolismo
9.
Cell Cycle ; 14(12): 1842-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25892397

RESUMEN

Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans.


Asunto(s)
Decidua/fisiología , Proteínas Represoras/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Femenino , Citometría de Flujo , Hepatocitos/metabolismo , Humanos , Ratones , Microscopía Fluorescente , Ovario/metabolismo , Poliploidía , Embarazo , Preñez , Progesterona/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Útero/metabolismo
10.
RNA Biol ; 12(3): 255-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826659

RESUMEN

Ribosome biogenesis governs protein synthesis. NIFK is transactivated by c-Myc, the key regulator of ribosome biogenesis. The biological function of human NIFK is not well established, except that it has been shown to interact with Ki67 and NPM1. Here we report that NIFK is required for cell cycle progression and participates in the ribosome biogenesis via its RNA recognition motif (RRM). We show that silencing of NIFK inhibits cell proliferation through a reversible p53-dependent G1 arrest, possibly by induction of the RPL5/RPL11-mediated nucleolar stress. Mechanistically it is the consequence of impaired maturation of 28S and 5.8S rRNA resulting from inefficient cleavage of internal transcribed spacer (ITS) 1, a critical step in the separation of pre-ribosome to small and large subunits. Complementation of NIFK silencing by mutants shows that RNA-binding ability of RRM is essential for the pre-rRNA processing and G1 progression. More specifically, we validate that the RRM of NIFK preferentially binds to the 5'-region of ITS2 rRNA likely in both sequence specific and secondary structure dependent manners. Our results show how NIFK is involved in cell cycle progression through RRM-dependent pre-rRNA maturation, which could enhance our understanding of the function of NIFK in cell proliferation, and potentially also cancer and ribosomopathies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Biosíntesis de Proteínas , Precursores del ARN/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Nucleofosmina , Motivos de Nucleótidos , Osteoblastos/citología , Osteoblastos/metabolismo , Unión Proteica , Precursores del ARN/metabolismo , ARN Ribosómico 28S/metabolismo , ARN Ribosómico 5.8S/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Transducción de Señal , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Cell Cycle ; 13(18): 2853-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486473

RESUMEN

In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25(+) as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1(+) is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1(+) in vivo and in vitro and inhibited expression of wee1(+), whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1(+) and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1(+) but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1(+) expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1(+) expression is primarily owing to Mei4p-mediated transcriptional interference.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Eliminación de Gen , Genes Fúngicos , Mitosis , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Proteínas Tirosina Quinasas/genética , Seudogenes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
12.
Cell Cycle ; 13(23): 3698-706, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483080

RESUMEN

For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Cisplatino/toxicidad , Proteínas con Homeodominio LIM/biosíntesis , Mitosis/fisiología , Células Horizontales de la Retina/metabolismo , Factores de Transcripción/biosíntesis , Animales , Antineoplásicos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Pollos , Mitosis/efectos de los fármacos , Células Horizontales de la Retina/efectos de los fármacos
13.
Cell Cycle ; 13(22): 3551-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483092

RESUMEN

Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Reparación del ADN/genética , Señales de Localización Nuclear/genética , Proteoma , Secuencia de Aminoácidos , Proteína Quinasa CDC2 , Ciclo Celular/genética , División Celular , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación
14.
RNA Biol ; 11(10): 1250-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25584704

RESUMEN

Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its ß-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.


Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Sitios de Unión , Dicroismo Circular , Proteínas ELAV/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , ARN/química , ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA