Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Proteins ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219154

RESUMEN

Inhibition of CD95/Fas activation is currently under clinical investigation as a therapy for glioblastoma multiforme and preclinical studies suggest that disruption of the CD95-CD95L interaction could also be a strategy to treat inflammatory and neurodegenerative disorders. Besides neutralizing anti-CD95L/FasL antibodies, mainly CD95ed-Fc, a dimeric Fc fusion protein of the extracellular domain of CD95 (CD95ed), is used to prevent CD95 activation. In view of the fact that full CD95 activation requires CD95L-induced CD95 trimerization and clustering of the resulting liganded CD95 trimers, we investigated whether fusion proteins of the extracellular domain of CD95 with a higher valency than CD95ed-Fc have an improved CD95L-neutralization capacity. We evaluated an IgG1(N297A)-based tetravalent CD95ed fusion protein which was obtained by replacing the variable domains of IgG1(N297A) with CD95ed (CD95ed-IgG1(N297A)) and a hexavalent variant obtained by fusion of CD95ed with a TNC-Fc(DANA) scaffold (CD95ed-TNC-Fc(DANA)) promoting hexamerization. The established N297A and DANA mutations were used to minimize FcγR binding of the constructs under maintenance of neonatal Fc receptor (FcRn) binding. Size exclusion high-performance liquid chromatography indicated effective assembly of CD95ed-IgG1(N297A). More important, CD95ed-IgG1(N297A) was much more efficient than CD95ed-Fc in protecting cells from cell death induction by human and murine CD95L. Surprisingly, despite its hexavalent structure, CD95ed-TNC-Fc(DANA) displayed an at best minor improvement of the capacity to neutralize CD95L suggesting that besides valency, other factors, such as spatial organization and agility of the CD95ed domains, play also a role in neutralization of CD95L trimers by CD95ed fusion proteins. More studies are now required to evaluate the superior CD95L-neutralizing capacity of CD95ed-IgG1(N297A) in vivo.

3.
Cancers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272785

RESUMEN

The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.

4.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162992

RESUMEN

PURPOSE: Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies. METHODS: To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint. RESULTS: Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes. CONCLUSION: In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.

5.
Biology (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056676

RESUMEN

Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.

6.
Cell Chem Biol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053461

RESUMEN

Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.

7.
J Med Virol ; 96(2): e29440, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38299675

RESUMEN

Post-transplant lymphoproliferative disorders (PTLDs) are associated with Epstein-Barr virus (EBV) infection in transplant recipients. Most of lymphoblastoid cell lines (LCLs) derived from EBV-immortalized B cells or PTLDs are sensitive to CD95-mediated apoptosis and cytotoxic T cell (CTL) killing. CD95 ligand (CD95L) exists as a transmembrane ligand (mCD95L) or a soluble form (sCD95L). Using recombinant mCD95L and sCD95L, we observed that sCD95L does not affect LCLs. While high expression of mCD95L in CTLs promotes apoptosis of LCLs, low expression induces clathrin-dependent CD19 internalization, caspase-dependent CD19 cleavage, and proteasomal/lysosomal-dependent CD19 degradation. The CD95L/CD95-mediated CD19 degradation impairs B cell receptor (BCR) signaling and inhibits BCR-mediated EBV activation. Interestingly, although inhibition of the caspase activity restores CD19 expression and CD19-mediated BCR activation, it fails to rescue BCR-mediated EBV lytic gene expression. EBV-specific CTLs engineered to overexpress mCD95L exhibit a stronger killing activity against LCLs. This study highlights that engineering EBV-specific CTLs to express a higher level of mCD95L could represent an attractive therapeutic approach to improve T cell immunotherapy for PTLDs.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Proteína Ligando Fas , Herpesvirus Humano 4/fisiología , Caspasas , Receptores de Antígenos de Linfocitos B/metabolismo
8.
EMBO Rep ; 25(4): 1792-1813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383861

RESUMEN

Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.


Asunto(s)
Ribonucleasas , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Ribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Respuesta de Proteína Desplegada , Muerte Celular
9.
Life Sci ; 338: 122394, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159593

RESUMEN

Colorectal cancer (CRC) is the second most fatal cancer. Many studies have shown that cancer stemness contributes to resistance to conventional chemotherapy and poor prognosis. However, the mechanisms involved in maintaining cancer stemness in CRC are still obscure and few clinical drugs were used to target cancer stemness. Previous studies had reported CD95 increases the stemness of cancer cells with long-term stimulation of exogenous agonist CD95 ligand (CD95L). However, the expression of CD95L is relative low in certain human tumor tissues. In this study, we found that CD95 was highly expressed in CRC cells, and in vitro it promoted the tumorsphere formation, chemotherapy resistance and in vivo tumor growth without stimulation of exogenous CD95L. Mechanistically, the bulk and single-cell RNA-sequencing results suggested that CD95 promotes stemness of CRC cells through upregulation of long non-coding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). MALAT1 knockdown inhibited CD95-induced tumorsphere formation and chemotherapy resistance. In summary, our findings reveal that CD95 has the capability to modulate cancer stemness via the action of the lncRNA MALAT1. Targeting CD95 may be a promising strategy to inhibit cancer stemness in CRC.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Proteína Ligando Fas , ARN Largo no Codificante/metabolismo
10.
Endocrinology ; 165(2)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38091978

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Lipocalina 2/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor , Supervivencia Celular , Medios de Cultivo Condicionados , Hierro , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Apoptosis , Receptor fas/genética , Receptor fas/metabolismo
11.
J Leukoc Biol ; 114(6): 672-683, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37820030

RESUMEN

Neutrophils infiltrate several types of cancer; however, whether their presence is associated with disease progression remains controversial. Here, we show that colon tumors overexpress neutrophil chemoattractants compared to healthy tissues, leading to their recruitment to the invasive margin and the central part of colon tumors. Of note, tumor-associated neutrophils expressing tumor necrosis factor α, which usually represents an antitumoral phenotype, were predominantly located in the invasive margin. Tumor-associated neutrophils from the invasive margin displayed an antitumoral phenotype with higher ICAM-1 and CD95 expression than neutrophils from healthy adjacent tissues. A higher neutrophil/lymphocyte ratio was found at later stages compared to the early phases of colon cancer. A neutrophil/lymphocyte ratio ≤3.5 predicted tumor samples had significantly more neutrophils at the invasive margin and the central part. Moreover, tumor-associated neutrophils at the invasive margin of early-stage tumors showed higher ICAM-1 and CD95 expression. Coculture of colon cancer cell lines with primary neutrophils induced ICAM-1 and CD95 expression, confirming our in situ findings. Thus, our data demonstrate that tumor-associated neutrophils with an antitumoral phenotype characterized by high ICAM-1 and CD95 expression infiltrate the invasive margin of early-stage colon tumors, suggesting that these cells can combat the disease at its early courses. The presence of tumor-associated neutrophils with antitumoral phenotype could help predict outcomes of patients with colon cancer.


Asunto(s)
Neoplasias del Colon , Neutrófilos , Humanos , Neutrófilos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias del Colon/patología , Fenotipo
12.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189004, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37865305

RESUMEN

Although the interaction of CD95L (also known as FasL) with its so-called death receptor CD95 (Fas) induces an apoptotic signal responsible for the elimination of infected and cancer cells and maintenance of tissue homeostasis, this receptor can also implement non apoptotic signaling pathways. This latter signaling is involved in metastatic dissemination in certain cancers and the severity of auto-immune disorders. The signaling complexity of this pair is increased by the fact that CD95 expression itself seems to contribute to oncogenesis via a CD95L-independent manner and, that both ligand and receptor might interact with other partners modulating their pathophysiological functions. Finally, CD95L itself can trigger cell signaling in immune cells rendering complex the interpretation of mouse models in which CD95 or CD95L are knocked out. Herein, we discuss these non-canonical responses and their biological functions.


Asunto(s)
Apoptosis , Neoplasias , Animales , Ratones , Proteína Ligando Fas , Receptor fas/metabolismo , Transducción de Señal/fisiología
13.
J Biol Chem ; 299(8): 104989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392849

RESUMEN

Synthetic biology has emerged as a useful technology for studying cytokine signal transduction. Recently, we described fully synthetic cytokine receptors to phenocopy trimeric receptors such as the death receptor Fas/CD95. Using a nanobody as an extracellular-binding domain for mCherry fused to the natural receptor's transmembrane and intracellular domain, trimeric mCherry ligands were able to induce cell death. Among the 17,889 single nucleotide variants in the SNP database for Fas, 337 represent missense mutations that functionally remained largely uncharacterized. Here, we developed a workflow for the Fas synthetic cytokine receptor system to functionally characterize missense SNPs within the transmembrane and intracellular domain of Fas. To validate our system, we selected five functionally assigned loss-of-function (LOF) polymorphisms and included 15 additional unassigned SNPs. Moreover, based on structural data, 15 gain-of-function or LOF candidate mutations were additionally selected. All 35 nucleotide variants were functionally investigated through cellular proliferation, apoptosis and caspases 3 and 7 cleavage assays. Collectively, our results showed that 30 variants resulted in partial or complete LOF, while five lead to a gain-of-function. In conclusion, we demonstrated that synthetic cytokine receptors are a suitable tool for functional SNPs/mutations characterization in a structured workflow.


Asunto(s)
Mutación con Pérdida de Función , Receptores Artificiales , Receptor fas , Apoptosis , Receptor fas/química , Receptor fas/genética , Polimorfismo de Nucleótido Simple , Dominios Proteicos
14.
Int J Gen Med ; 16: 2285-2294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304906

RESUMEN

Background: Immune checkpoint inhibitors have achieved limited clinical effectiveness in colon cancer. Stem memory T cells (TSCMs) and in-situ cytotoxic T cells are dominant contributors to host immunity. Currently, data on the correlation between TSCM and T cell abundance and clinicopathological characteristics in colon cancer are largely unavailable. Methods: In-situ cytotoxic T cells are identified based on the quantification of CD3+ and CD8+ markers using immunohistochemistry (IHC) in the core of the tumor and the invasive margin of the tumor. The expression of representative markers of TSCMs, CD27 and CD95, was assayed using IHC in colon cancer tissues. Correlations between the levels of each marker and the clinicopathological characteristics as well as prognosis were evaluated. Results: High densities of CD3+ and CD8+ T cells correlated with stage I-II tumors, whereas a lower infiltration of cytotoxic T cells correlated with advanced-stage tumors. CD27 and CD95 were both expressed in the membrane of T cells present in the tumor stroma and their levels showed a negative correlation with the TNM stage. CD3, CD8, and CD27 were expressed at the same locations simultaneously, indicating their coordinated action against cancer. In addition, cytotoxic T cell densities and CD27 and CD95 expression remained independent prognostic factors for overall survival. Conclusion: In-situ cytotoxic T cells and TSCMs play important roles in colon cancer development. TSCMs marker CD27 and CD95 were both indicators of survival in patients with colon cancer. Thus, it is believed that TSCMs represent a desirable population for future use in combination immunotherapy.

15.
BMC Immunol ; 24(1): 12, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353767

RESUMEN

BACKGROUND: Patients with Sjögren's syndrome, like other patients with autoimmune disorders, display dysregulation in the function of their immune system. Fas and Fas Ligand (FasL) are among the dysregulated proteins. METHODS: We studied Fas and FasL on IL-2Rα+ cells and in serum of patients with Sjögren's syndrome (n = 16) and healthy individuals (n = 16); both from same ethnic and geographical background. We used flow cytometry and enzyme-linked immunosorbent for this purpose. We also measured the expression of Bcl-2 and Bax by reverse transcription quantitative real-time PCR (RT-qPCR) and percentage of apoptotic and dead cells using Annexin V and 7-AAD staining in lymphocytes. RESULTS: FasL was increased in patients' T and B cells while Fas was increased in patients' monocytes, T and B cells. No signs of increased apoptosis were found. sFas and sFasL in patients' serum were increased, although the increase in sFasL was not significant. We suspect an effect of non-steroidal anti-inflammatory therapy on B cells, explaining the decrease of the percentage Fas+ B cells found within our samples. In healthy individuals, there was a noticeable pattern in the expression of FasL which mutually correlated to populations of mononuclear cells; this correlation was absent in the patients with Sjögren's syndrome. CONCLUSIONS: Mononuclear cells expressing IL-2Rα+ had upregulated Fas in Sjögren's syndrome. However, the rate of apoptosis based on Annexin V staining and the Bcl-2/Bax expression was not observed in mononuclear cells. We suspect a functional role of abnormal levels of Fas and FasL which has not been cleared yet.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Sjögren , Humanos , Anexina A5 , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis , Receptor fas/metabolismo
16.
Discov Oncol ; 14(1): 68, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37191832

RESUMEN

BACKGROUND: Radiotherapy (RT) is frequently adopted to control cancer cell proliferation, which is achieved by altering the tumor microenvironment (TME) and immunogenicity. Apoptosis of cancer cells is the major effect of radiation on tumor tissues. Fas/APO-1(CD95) receptors on the cell membrane are death receptors that can be activated by diverse factors, including radiation and integration with CD95L on CD8+ T cells. The abscopal effect is defined as tumor regression out of the local RT field, and it is produced through anti-tumor immunity. The immune response against the radiated tumor is characterized by the cross-presentation between antigen-presenting cells (APCs), which includes cytotoxic T cells (CTLs) and dendritic cells (DCs). METHODS: The effect of activation and radiation of CD95 receptors on melanoma cell lines was examined in vivo and in vitro. In vivo, bilateral lower limbs were given a subcutaneous injection of a dual-tumor. Tumors in the right limb were radiated with a single dose of 10 Gy (primary tumor), while tumors in the left limb (secondary tumor) were spared. RESULTS: The anti-CD95 treatment plus radiation (combination treatment) reduced growth rates of both primary and secondary tumors relative to the control or radiation groups. In addition, higher degrees of infiltrating CTLs and DCs were detected in the combination treatment compared to the other groups, but the immune response responsible for secondary tumor rejection was not proven to be tumor specific. In vitro, combination treatment combined with radiation resulted in further apoptosis of melanoma cells relative to controls or cells treated with radiation. CONCLUSIONS: Targeting CD95 on cancer cells will induce tumor control and the abscopal effect.

17.
Int J Biol Macromol ; 235: 123804, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36842736

RESUMEN

The liver is the most important organ in the body. Hepatocyte oxidative damage occurs to excess ROS. Liver fibrosis is a mechanism that the immune system uses to treat extreme inflammation by repairing damaged tissue with the creation of a scar. The outcome of fibrosis may be reversed by consuming natural plant extracts with high ROS-scavenging ability. The date palm fruits contain caffeic acid, gallic acid, syringic acid, and ferulic acid, which have anti-inflammatory, antioxidant, and hepatoprotective properties. This study aimed to prepare a date fruit extract, load it onto chitosan nanoparticles, and compare its anti-fibrotic activity with the unloaded crude extract in the CCl4-mouse model. Our findings show that nanocomposite (Cs@FA/DEx) has anti-fibrotic properties and can improve liver function enzymes and endogenous antioxidant enzymes by inhibiting cell apoptosis caused by CCl4-induction in mice. Furthermore, significantly reduced CD95 and ICAM1 levels and down-regulation of TGFß-1 and collagen-α-1 expression demonstrated the anti-fibrotic effects of the Cs@FA/DEx. Therefore, the Cs@FA/DEx might be an innovative supplement for inhibiting liver fibrosis and hepatocyte inflammation induced by chemical toxins. Besides, this nano-supplement could be a promising anti-hepatocellular carcinoma agent as it has potent in vitro anticancer activity against the HePG2 cell line.


Asunto(s)
Quitosano , Hepatopatías , Nanopartículas , Phoeniceae , Ratones , Animales , Phoeniceae/química , Quitosano/farmacología , Quitosano/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/química , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Antioxidantes/química , Hepatopatías/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Tetracloruro de Carbono/toxicidad
18.
FEBS J ; 290(12): 3145-3164, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36694998

RESUMEN

CD95 is a member of the TNF receptor superfamily that is ubiquitously expressed in healthy and pathological tissues. Stimulation of CD95 by its physiological ligand CD95L induces its oligomerization leading in turn to the transduction of either apoptotic or nonapoptotic signals. CD95L can exist as both membrane-anchored and soluble forms (sCD95L), the latter resulting from the proteolytic cleavage of the former. Candidate proteases able to achieve CD95L cleavage were identified as matrix metalloproteases (MMP) due to their demonstrated ability to cleave other TNF superfamily ligands. The main goal of this study was to systematically identify the MMP family members capable of cleaving CD95L and subsequently determine the corresponding cleavage sites. By using different orthogonal biochemical approaches and combining them with molecular modelling, we confirmed data from the literature regarding CD95L cleavage by MMP-3 and MMP-7. Moreover, we found that MMP-2 and MMP-12 can cleave CD95L and characterized their resulting cleavage sites. This study provides a systematic approach to analyse the cleavage of CD95L, which until now had only been poorly described.


Asunto(s)
Metaloproteasas , Receptor fas , Proteína Ligando Fas/química , Receptor fas/fisiología , Apoptosis/fisiología
19.
Probiotics Antimicrob Proteins ; 15(5): 1234-1249, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995910

RESUMEN

Intestinal microecology was closely related to immune regulation, but the related mechanism was still unclear. This study aimed to reveal how microorganisms improved immune response via casepase-3 and Bak of FAS/CD95 pathway. Bifidobacterium animalis F1-7 inhibited the melanoma B16-F10 cells in vitro effectively; had a potent anticancer effect of lung cancer mice; effectively improved the spleen immune index and CD3+ (75.8%) and CD8+ (19.8%) expression level; strengthened the phagocytosis of macrophages; inhibited the overexpression of inflammatory factors IL-6 (319.10 ± 2.46 pg/mL), IL-8 (383.05 ± 9.87 pg/mL), and TNF-α (2003.40 ± 11.42 pg/mL); and promoted the expression of anti-inflammatory factor IL-10 (406.00 ± 3.59 pg/mL). This process was achieved by promoting caspase-8/3 and BH3-interacting domain death agonist (Bid), Bak genes, and protein expression. This study confirmed the B. animalis F1-7 could act as an effective activator to regulate immune response by promoting the expression of caspase-8/3, Bid and Bak genes, and proteins and by activating the FAS/CD95 pathway. Our study provided a data support for the application of potentially beneficial microorganisms of B. animalis F1-7 as an effective activator to improve immunity.


Asunto(s)
Apoptosis , Bifidobacterium animalis , Ratones , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 8/farmacología , Transducción de Señal/fisiología , Receptor fas/genética , Receptor fas/metabolismo , Inmunidad
20.
Immunol Cell Biol ; 101(2): 142-155, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36353774

RESUMEN

The long-term health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are still being understood. The molecular and phenotypic properties of SARS-CoV-2 antigen-specific T cells suggest a dysfunctional profile that persists in convalescence in those who were severely ill. By contrast, the antigen-specific memory B-cell (MBC) population has not yet been analyzed to the same degree, but phenotypic analysis suggests differences following recovery from mild or severe coronavirus disease 2019 (COVID-19). Here, we performed single-cell molecular analysis of the SARS-CoV-2 receptor-binding domain (RBD)-specific MBC population in three patients after severe COVID-19 and four patients after mild/moderate COVID-19. We analyzed the transcriptomic and B-cell receptor repertoire profiles at ~2 months and ~4 months after symptom onset. Transcriptomic analysis revealed a higher level of tumor necrosis factor-alpha (TNF-α) signaling via nuclear factor-kappa B in the severe group, involving CD80, FOS, CD83 and TNFAIP3 genes that was maintained over time. We demonstrated the presence of two distinct activated MBCs subsets based on expression of CD80hi TNFAIP3hi and CD11chi CD95hi at the transcriptome level. Both groups revealed an increase in somatic hypermutation over time, indicating progressive evolution of humoral memory. This study revealed distinct molecular signatures of long-term RBD-specific MBCs in convalescence, indicating that the longevity of these cells may differ depending on acute COVID-19 severity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Convalecencia , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA