Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Exp Med ; 24(1): 47, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427068

RESUMEN

Systemic lupus erythematosus (SLE) is a sex biased chronic autoimmune disease affecting predominantly females during reproductive ages. Changes in the ratio of inducible costimulatory molecule (ICOS)+ regulatory (Treg) and non-regulatory responder (Tresp) CD4+ T cells proved to be crucial for the occurrence of high disease activity. Here, we investigated how the differentiation of ICOS+CD45RA+CD31+ recent thymic emigrant (RTE) Tresps into CD45RA-CD31- memory Tresps affects the percentages of ICOS+ Tresps within total CD4+ T cells. Three different pathways (pathway 1 via CD45RA-CD31+ memory Tresps, pathway 2 via direct proliferation and pathway 3 via resting mature naïve CD45RA+CD31- (MN) cells) were examined in healthy controls and SLE remission patients separated by sex. In female SLE remission patients, immunosuppressive therapy inhibited the ICOS+ RTE differentiation via CD45RA-CD31+ memory Tresps and direct proliferation, leaving an age-independently increased differentiation into CD45RA-CD31- memory Tresps by conversion of resting MN Tresps compared with healthy controls. Due to exhaustion of this pathway with age, no age-dependent change in the percentages of ICOS+ Tresps within total CD4+ T cells could be found. In contrast, no age-independently increased differentiation could be detected in men due to sufficient immunosuppression of all three pathways. This allowed an age-dependent differentiation of ICOS+ RTE Tresps into CD45RA-CD31- memory Tresps by conversion of resting MN Tresps, resulting in age-dependently increasing percentages of ICOS+ Tresps within total CD4+ T cells. We hypothesize that the sex-specific differential effect of immunosuppression on the differentiation of ICOS+ Tresps may explain the sex- and age-dependent occurrence of high disease activity.


Asunto(s)
Lupus Eritematoso Sistémico , Subgrupos de Linfocitos T , Masculino , Humanos , Femenino , Linfocitos T Reguladores , Diferenciación Celular , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo
2.
Immunol Res ; 72(2): 347-360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38066380

RESUMEN

Recently, long non­coding RNAs (lncRNAs) have been implicated in several human diseases, including arthritis. However, the role of lncRNAs in regulating the Th17/Treg ratio during the progression of collagen-induced arthritis (CIA) is poorly understood. Therefore, the aim of this study was to determine the role of the lncRNA ENSMUST00000197208 and the P2X7R-NLRP3 inflammasome axis in changes in the Th17/Treg ratio in CIA. To achieve this, the distribution of T cell subgroups in the spleen cells of a CIA mouse model and control mice was examined. Additionally, we examined the expression profile of ENSMUST00000197208 in a CIA mouse model and healthy mice. The results showed that ENSMUST00000197208 expression was significantly upregulated in the CIA models compared with the control group. Additionally, the P2X7R-NLRP3 inflammasome axis participated in the pathogenesis of CIA and knockdown of ENSMUST00000197208 inhibited CD4+ T cell differentiation into Th17 cells. Compared with the control group, joint inflammation was less visible in NLRP3 knockout mice. Additionally, the P2X7R-NLRP3 inflammasome axis, which is downstream of ENSMUST00000197208, can be positively targeted and regulated by ENSMUST00000197208 through miR-107. Overall, the findings of this study showed that the "lncRNA ENSMUST00000197208-miR 107-P2X7R/NLRP3" axis plays an important role in CIA and knocking down ENSMUST00000197208 can efficiently inhibit Th17 differentiation by suppressing the P2X7R-NLRP3 inflammasome axis. Therefore, targeting this axis may represent a novel strategy for arthritis treatment.

3.
Int Immunopharmacol ; 125(Pt B): 111206, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956491

RESUMEN

Liver fibrosis is a major global health issue, and immune dysregulation is a main contributor. Triptolide is a natural immunosuppressive agent with demonstrated effectiveness in ameliorating liver fibrosis, but whether it exerts anti-liver fibrotic effects via immunoregulation remains obscure. In this study, first, by employing a CCL4-induced liver fibrosis mouse model, we demonstrated that triptolide could alleviate pathological damage to liver tissue and attenuate liver function damaged by CCL4. In addition, triptolide inhibited the expression of liver fibrotic markers such as hydroxyproline, collagen type IV, hyaluronidase, laminin, and procollagen type III, and the protein expression of α-SMA in CCL4-induced liver fibrosis. Second, with the help of network pharmacology, we predicted that triptolide's anti-liver fibrotic effects might occur through the regulation of Th17, Th1, and Th2 cell differentiation, which indicated that triptolide might mitigate liver fibrosis via immunoregulation. Finally, multiplex immunoassays and flow cytometry were adopted to verify this prediction. The results suggested that triptolide could reverse the aberrant expression of inflammatory cytokines caused by CCL4 and regulate the differentiation of Th1, Th2, Th17, and Treg cells. In conclusion, triptolide could attenuate CCL4-induced liver fibrosis by regulating the differentiation of CD4+ T cells. The results obtained in this study extended the application of triptolide and introduced a new mechanism of triptolide's anti-liver fibrotic effects.


Asunto(s)
Cirrosis Hepática , Hígado , Ratones , Animales , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/patología , Linfocitos T Reguladores , Diferenciación Celular , Tetracloruro de Carbono/efectos adversos
4.
Elife ; 112022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255051

RESUMEN

Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.


Asunto(s)
Enfermedad Injerto contra Huésped , Coriomeningitis Linfocítica , Ratones , Animales , Virus de la Coriomeningitis Linfocítica , Ratones Endogámicos C57BL , Coriomeningitis Linfocítica/genética , Receptores de Antígenos de Linfocitos T/genética , Subgrupos de Linfocitos T , Linfocitos T CD4-Positivos
5.
Front Cell Dev Biol ; 10: 831215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35794862

RESUMEN

CD4+ T cells differentiate towards different subpopulations through the regulation of lineage-specific cytokines and transcription factors, which flexibly respond to various immune challenges. However, considerable work has demonstrated that the CD4+ T-cell differentiation mechanism is complex and not limited to transcription factors and cytokines. Long noncoding RNAs (lncRNAs) are RNA molecules with lengths exceeding 200 base pairs that regulate various biological processes and genes. LncRNAs have been found to conciliate the plasticity of CD4+ T-cell differentiation. Then, we focused on lncRNAs involved in CD4+ T-cell differentiation and enlisted some molecular thought into the plasticity and functional heterogeneity of CD4+ T cells. Furthermore, elucidating how lncRNAs modulate CD4+ T-cell differentiation in disparate immune diseases may provide a basis for the pathological mechanism of immune-mediated diseases.

6.
Genomics ; 114(3): 110367, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429609

RESUMEN

Differentiation of CD4+ T naïve (TN) into central memory (TCM) cells involves extensive molecular processes. We compared the transcriptomes of CD4+ TN and TCM cells from HIV-1 infected patients receiving early anti-retroviral therapy (ART; EA; n = 13) and controls (n = 15). Comparison of protein coding genes between TCM and TN revealed 533 and 82 differentially expressed genes (DEGs) in controls and EA, respectively. A high degree of transcriptional complexity was detected during transition of CD4+ TN to TCM cells in controls involving 70 TFs, 20 master regulators of T cell differentiation (TBX21, GATA3, RARA, FOXP3, RORC); in EA only 7 TFs were modulated with expression of several master regulators remaining unchanged during differentiation. Analysis of interactions between modulated TFs and target genes revealed important regulatory interactions missing in EA group. We conclude that T cell differentiation in EA patients is impaired due to reduced modulation of genes involved in transition from CD4+ TN to TCM cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T CD4-Positivos/metabolismo , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Diferenciación Celular , Factores de Transcripción/metabolismo
7.
Cell Rep ; 38(13): 110567, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35354044

RESUMEN

Dectin-1 recognizes ß-glucan in fungal cell walls, and activation of Dectin-1 in dendritic cells (DCs) influences immune responses against fungi. Although many studies have shown that DCs activated via Dectin-1 induce different subsets of T helper cells according to different cytokine milieus, the mechanisms underlying such differences remain unknown. By harnessing polymorphic Candida albicans and polystyrene beads of different sizes, we find that target size influences production of cytokines that control differentiation of T helper cell subsets. Hyphal C. albicans and large beads activate DCs but cannot be phagocytosed due to their sizes, which prolongs the duration of Dectin-1 signaling. Transcriptomic analysis reveals that expression of Il33 is significantly increased by larger targets, and increased IL-33 expression promotes TH9 responses. Expression of IL-33 is regulated by the Dectin-1-SYK-PLCγ-CARD9-ERK pathway. Altogether, our study demonstrates that size of fungi can be a determining factor in how DCs induce context-appropriate adaptive immune responses.


Asunto(s)
Células Dendríticas , Lectinas Tipo C , Diferenciación Celular , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores
8.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209797

RESUMEN

Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Crioterapia/efectos adversos , Hierro/metabolismo , Hierro/farmacología , Activación de Macrófagos/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Femenino , Quelantes del Hierro/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Linfocitos T Citotóxicos/fisiología
9.
Mol Cells ; 44(5): 318-327, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33972470

RESUMEN

CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.


Asunto(s)
Procesamiento Proteico-Postraduccional/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Transcripción/inmunología , Diferenciación Celular , Humanos
10.
Eur J Immunol ; 51(6): 1377-1389, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33728639

RESUMEN

The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high , and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33- Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.


Asunto(s)
Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/inmunología , Leucocitos Mononucleares/inmunología , Glicoproteínas de Membrana/metabolismo , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Diferenciación Celular , Linaje de la Célula , Separación Celular , Citometría de Flujo , Células HEK293 , Humanos , Inmunidad Innata , Memoria Inmunológica , Glicoproteínas de Membrana/genética , Receptores CXCR5/metabolismo
11.
Int Immunol ; 33(2): 59-77, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32840576

RESUMEN

The type I interferons are central to a vast array of immunological functions. The production of these immune-modulatory molecules is initiated at the early stages of the innate immune responses and, therefore, plays a dominant role in shaping downstream events in both innate and adaptive immunity. Indeed, the major role of IFN-α/ß is the induction of priming states, relevant for the functional differentiation of T lymphocyte subsets. Among T-cell subtypes, the CD4+CD25+Foxp3+ T regulatory cells (Tregs) represent a specialized subset of CD4+ T cells with a critical role in maintaining peripheral tolerance and immune homeostasis. Although the role of type I interferons in maintaining the function of thymus-derived Tregs has been previously described, the direct contribution of these innate factors to peripheral Treg (pTreg) and induced Treg (iTreg) differentiation and suppressive function is still unclear. We now show that, under tolerogenic conditions, IFN-α/ß play a critical role in antigen-specific and also polyclonal naive CD4+ T-cell conversion into peripheral antigen-specific CD4+CD25+Foxp3+ Tregs and inhibit CD4+ T helper (Th) cell expansion in mice. While type I interferons sustain the expression and the activation of the transcription master regulators Foxp3, Stat3 and Stat5, these innate molecules reciprocally inhibit Th17 cell differentiation. Altogether, these results indicate a new pivotal role of IFN-α/ß on pTreg differentiation and induction of peripheral tolerance, which may have important implications in the therapeutic control of inflammatory disorders, such as of autoimmune diseases.

12.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120978

RESUMEN

Understanding the various mechanisms that govern the development, activation, differentiation, and functions of T cells is crucial as it could provide opportunities for therapeutic interventions to disrupt immune pathogenesis. Immunometabolism is one such area that has garnered significant interest in the recent past as it has become apparent that cellular metabolism is highly dynamic and has a tremendous impact on the ability of T cells to grow, activate, and differentiate. In each phase of the lifespan of a T-cell, cellular metabolism has to be tailored to match the specific functional requirements of that phase. Resting T cells rely on energy-efficient oxidative metabolism but rapidly shift to a highly glycolytic metabolism upon activation in order to meet the bioenergetically demanding process of growth and proliferation. However, upon antigen clearance, T cells return to a more quiescent oxidative metabolism to support T cell memory generation. In addition, each helper T cell subset engages distinct metabolic pathways to support their functional needs. In this review, we provide an overview of the metabolic changes that occur during the lifespan of a T cell and discuss several important studies that provide insights into the regulation of the metabolic landscape of T cells and how they impact T cell development and function.


Asunto(s)
Linfocitos T/metabolismo , Animales , Diferenciación Celular , Senescencia Celular , Metabolismo Energético , Glucólisis , Humanos , Activación de Linfocitos
13.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971928

RESUMEN

Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4+ T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naïve Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORγt in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4+ T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4+ T cell-mediated diseases.


Asunto(s)
Comunicación Autocrina/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Glicoproteínas de Membrana/inmunología , Semaforinas/inmunología , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Diferenciación Celular/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/patología , Células TH1/patología , Células Th17/patología , Células Th2/patología
14.
Front Immunol ; 11: 624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508803

RESUMEN

T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.


Asunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular , Proliferación Celular , Selección Clonal Mediada por Antígenos , Citocinas/metabolismo , Humanos , Activación de Linfocitos , Transducción de Señal
15.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340571

RESUMEN

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/citología , Diferenciación Celular/genética , Citocinas/metabolismo , Humanos , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
16.
Biomed Pharmacother ; 125: 109946, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32004976

RESUMEN

OBJECTIVES: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Curcumin has been reported to be an anti-inflammatory factor through enhancing the function of regulatory T cells (Tregs). This study aimed to explore the effect of curcumin on the differentiation of Tregs and the role of curcumin in ALI/ARDS. METHODS: A cecal ligation and puncture (CLP)-induced acute lung injury mouse model was used to explore the effect of curcumin in ALI/ARDS. The severity of lung injury was evaluated. Immunohistochemistry of IL-17A and MPO in lung tissue was examined. Treg-related cytokine levels in serum and bronchoalveolar lavage fluid (BALF) were tested. The expression of nuclear factor-kappa B (NF-κB) in lung tissue was detected. Macrophages in lung tissue were detected by immunofluorescence. Splenic CD4+CD25+FOXP3+ Tregs were quantified, and the differentiation of Tregs from naïve CD4 + T cell and STAT5 was evaluated. The expression of IL-10 during naïve CD4 + T cell differentiation in vitro was tested. RESULTS: Curcumin alleviated lung injury in the induced CLP mouse model and suppressed inflammation. IL-17A, MPO-producing neutrophils, and NF-κB p65 expression in lungs of CLP mice decreased significantly after pretreatment with curcumin. We found curcumin could regulate M1/M2 macrophage levels in lungs of CLP mice. This may have been through regulating the differentiation of Tregs and the production of Treg-derived IL-10. Treg-derived IL-10 is the main factor that could affect macrophage polarization. We found curcumin could increase Treg proportions in vivo and up-regulate IL-10 expression in serum and BALF of CLP mice. In our in vitro experiments, we found curcumin could promote Treg differentiation and increase the production of IL-10. CONCLUSIONS: Curcumin can reduce the degree of severity of ALI and uncontrolled inflammation through promoting the differentiation of naïve CD4 + T cells to CD4+ CD25+ FOXP3+ Tregs. Curcumin promotes the conversion of macrophages from M1 to M2. The differentiation of Tregs induced by curcumin may be one source of IL-10 immune modulation.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Curcumina/farmacología , Inflamación/prevención & control , Síndrome de Dificultad Respiratoria/prevención & control , Lesión Pulmonar Aguda/inmunología , Animales , Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Interleucina-10/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/inmunología , Linfocitos T Reguladores/inmunología
17.
World J Pediatr ; 16(1): 99-110, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31102153

RESUMEN

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in childhood driven by aberrant pathways of T-cell activation. T helper 17 (Th17)/regulatory T cell (Treg) imbalance plays critical roles in the pathogenesis of arthritis. MicroRNA-125b (miR-125b) was upregulated after the activation of the initial CD4+ T cells, and could regulate the differentiation of CD4+ T cells. However, the effects of miR-125b on Th17/Treg imbalance and differentiation of Th17/Treg cells remain unknown. METHODS: In this study, we evaluated the expression of miR-125b in the peripheral blood mononuclear cells (PBMCs) of children with JIA, and the relationship of miR-125b with Th17/Treg imbalance. Then, we used lentivirus vector-mediated overexpression technology to investigate the regulatory function of miR-125b in CD4+ T cells or dendritic cell/CD4+ T co-culture system. RESULTS: Decreased miR-125b expression in PBMCs and CD4+ T cells of JIA patients was negatively correlated with the ratio of Th17/Treg cells. It also correlated negatively with retinoic acid receptor-related orphan receptor γt but positively with Forkhead box protein 3 at transcriptional levels. Furthermore, we found that miR-125b overexpression inhibited Th17 cell differentiation, whereas facilitated the differentiation of Treg cells. MiR-125b upregulation led to the decrease of Th17-secreting cytokines but the increase of the Treg-secreting cytokines. CONCLUSIONS: Our results demonstrate that miR-125b participated in regulating Th17/Treg cell differentiation and imbalance in JIA patients. These findings provide novel insight into the critical role of miR-125b in the Th17/Treg imbalance of JIA, and raise the distinct possibility that miR-125b may prove to be a potential therapeutic target for JIA.


Asunto(s)
Artritis Juvenil/metabolismo , MicroARNs/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Estudios de Casos y Controles , Diferenciación Celular , Niño , Técnicas de Cocultivo , Células Dendríticas/metabolismo , Femenino , Humanos , Masculino , Ratones
18.
Adv Immunol ; 144: 87-119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31699221

RESUMEN

The Hippo signaling pathway has been shown to play a pivotal role in controlling organ size and maintaining tissue homeostasis in multiple organisms ranging from Drosophila to mammals. Recently, we and others have demonstrated that Hippo signaling is also essential for maintaining the immune system homeostasis. Unlike the canonical Mst-Lats-Yap signal pathway, which controls tissue growth during development and regeneration, most studies regarding Hippo signaling in immune regulation is focusing in Mst1/2, the core kinases of Hippo signaling, cross-talking with other signaling pathways in various immune cells. In particular, patients bearing a loss-of-function mutation of Mst1 develop a complex immunodeficiency syndrome. Regarding the Hippo signaling in innate immunity, we have reported that Mst1/2 kinases are required for phagocytosis and efficient clearance of bacteria in phagocytes by regulating reactive oxygen species (ROS) production; and at the same time, by sensing the excessive ROS, Mst1/2 kinases maintain cellular redox homeostasis and prevent phagocytes aging and death through modulating the stability of the key antioxidant transcription factor Nrf2. In addition, we have revealed that the Mst1/2 kinases are critical in regulating T cells activation and Mst1/2-TAZ axis regulates the reciprocal differentiation of Treg cells and Th17 cells to modulate autoimmune inflammation by altering interactions between the transcription factors Foxp3 and RORγt. These results indicate that Hippo signaling maintains the balance between tolerance and inflammation of adaptive immunity.


Asunto(s)
Macrófagos/inmunología , Fagocitosis/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa/genética , Animales , Diferenciación Celular/inmunología , Regulación de la Expresión Génica/genética , Factor de Crecimiento de Hepatocito , Homeostasis/inmunología , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/microbiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal/genética , Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Cell Rep ; 29(5): 1203-1220.e7, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665634

RESUMEN

The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription. The chromatin-organizing actions of Batf are largely dependent on Ets1, which appears to be indispensable for the Batf-dependent recruitment of Ctcf. Moreover, most of the Batf-dependent sites to which Ctcf is recruited lie outside of activating protein-1-interferon regulatory factor (Ap-1-Irf) composite elements (AICEs), indicating that direct involvement of Batf-Irf complexes is not required. These results identify a cooperative role for Batf, Ets1, and Ctcf in chromatin reorganization that underpins the transcriptional programming of effector T cells.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factor de Unión a CCCTC/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Cromatina/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Genoma , Humanos , Factores Reguladores del Interferón/metabolismo , Interleucinas/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Unión Proteica , Regulación hacia Arriba/genética
20.
Int J Hyperthermia ; 36(1): 408-420, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30892102

RESUMEN

PURPOSE: We previously developed a novel cryo-thermal therapy to treat malignant mammary carcinoma and melanoma in a mouse model; long-term survival and CD4+ T cell orchestrating anti-tumor immune memory response were achieved. Moreover, cryo-thermal-induced CD4+ T cell differentiation into Th1 and CD4+CTL sub-lineages, in which M1 macrophage polarization played a direct, important role. In particular, cryo-thermal therapy triggered M1 macrophage polarization with up-regulated expression of C-X-C motif ligand 10 (CXCL10) and Interleukin 6 (IL-6). But whether CXCL10 and IL-6 contribute to CD4+ T cell-mediated anti-tumor immunity remains unclear. In this study, the role of cryo-thermal-induced CXCL10 and IL-6 in anti-tumor immunity was determined. METHODS: The level of CXCL10 and IL-6 in spleen and serum was determined by RT-PCR and ELISA on day 14 after cryo-thermal therapy. Splenic dendritic cells (DCs) and macrophages were isolated from cryo-thermal-treated mice on day 5 and 14, and the level of CXCL10 and IL-6 in macrophages and DCs was determined by ELISA. The transwell migration assay was performed to study immune cell migration. In vivo neutralization of CXCL10 or IL-6 was performed to investigate the phenotypic changes of immune cells. RESULTS: Cryo-thermal therapy induced M1 macrophage polarization with up-regulation of CXCL10 and IL-6 expression in spleen. CXCL10 and IL-6 promoted DCs migration and maturation, and subsequently promoted CD4+ T cell migration and differentiation into Th1 and CD4+ CTL, moreover, reduced myeloid-derived suppressor cells (MDSCs) accumulation. CONCLUSIONS: Cryo-thermal-induced CXCL10 and IL-6 created acute inflammatory environment to initiate a systemically cascading innate and adaptive anti-tumor immunity, which was more permissive for tumor eradication.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Quimiocina CXCL10/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA