Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 48: 72-81, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29852271

RESUMEN

Manipulation of multiple genes to engineer Chinese Hamster Ovary (CHO) cells for better performance in production processes of biopharmaceuticals has recently become more and more popular. Yet, identification of useful genes and the unequivocally assessment of their effect alone and in combination(s) on the cellular phenotype is difficult due to high variation between subclones. Here, we present development and proof-of-concept of a novel engineering strategy using multiplexable activation of artificially repressed genes (MAARGE). This strategy will allow faster screening of overexpression of multiple genes in all possible combinations. MAARGE, in its here presented installment, comprises four different genes of interest that can all be stably integrated into the genome from one plasmid in a single transfection. Three of the genes are initially repressed by a repressor element (RE) that is integrated between promoter and translation start site. We show that an elongated 5'-UTR with an additional transcription termination (poly(A)) signal most efficiently represses protein expression. Distinct guide RNA (gRNA) targets flanking the REs for each gene then allow to specifically delete the RE by CRISPR/Cas9 and thus to activate the expression of the corresponding gene(s). We show that both individual and multiplexed activation of the genes of interest in a stably transfected CHO cell line is possible. Also, upon transfection of this stable cell line with all three gRNAs together, it was possible to isolate cells that express all potential gene combinations in a single experiment.


Asunto(s)
Sistemas CRISPR-Cas , Expresión Génica , Ingeniería Genética/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transfección
2.
Biotechnol Rep (Amst) ; 1-2: 22-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28435799

RESUMEN

In biopharmaceutical production, the optimization of cell culture media and supplementation is a vital element of process development. Optimization is usually achieved through the screening of multiple media, feed and feeding strategies. However, most screening is performed in shake flasks, which makes the screening process very time consuming and inefficient. The use of small scale culture systems for the screening process can aid in the ability to screen multiple formulations during process development. In order to assess the suitability of 24 deep well (24DW) plates with the Duetz sandwich-covers as a small scale culture system for process development, we have tested growth and production performance of CHO cells in 24DW plates and conventional shake flask cultures. Multiple studies were performed to assess well-to-well and plate-to-plate variability in 24DW plates. Additional studies were performed to determine the applicability of 24DW plates for cell culture medium and supplement screening in batch and fed batch processes. Cultures in 24DW plates exhibited similar kinetics in growth, viability and protein production to those cultured in shake flasks, suggesting that 24DW plates with Duetz sandwich-covers can be effectively used for high throughput cell culture screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA