Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med ; 123: 103409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870644

RESUMEN

PURPOSE: Target positions should be acquired during beam delivery for accurate lung stereotactic body radiotherapy. We aimed to perform kilovoltage (kV) imaging during beam irradiation (intra-irradiation imaging) under phase-gated conditions and evaluate its performance. METHODS: Catphan 504 and QUASAR respiratory motion phantoms were used to evaluate image quality and target detectability, respectively. TrueBeam STx linac and the Developer Mode was used. The imaging parameters were 125 kVp and 1.2 mAs/projection. Flattened megavoltage (MV) X-ray beam energies 6, 10 and 15 MV and un-flattened beam energies 6 and 10 MV were used with field sizes of 5 × 5 and 15 × 15 cm2 and various frame rates for intra-irradiation imaging. In addition, using a QUASAR phantom, intra-irradiation imaging was performed during intensity-modulated plan delivery. The root-mean-square error (RMSE) of the CT-number for the inserted rods, image noise, visual assessment, and contrast-to-noise ratio (CNR) were evaluated. RESULTS: The RMSEs of intra-irradiation cone-beam computed tomography (CBCT) images under gated conditions were 50-230 Hounsfield Unit (HU) (static < 30 HU). The noise of the intra-irradiation CBCT images under gated conditions was 15-35 HU, whereas that of the standard CBCT images was 8.8-27.2 HU. Lower frame rates exhibited large RMSEs and noise; however, the iterative reconstruction algorithm (IR) was effective at improving these values. Approximately 7 fps with the IR showed an equivalent CNR of 15 fps without the IR. The target was visible on all the gated intra-irradiation CBCT images. CONCLUSION: Several image quality improvements are required; however, intra-irradiated CBCT images showed good visual target detection.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Fantasmas de Imagen , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Radioterapia de Intensidad Modulada/métodos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Planificación de la Radioterapia Asistida por Computador/métodos
2.
Phys Med ; 110: 102605, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167776

RESUMEN

PURPOSE: Quantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. METHODS: Consecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. RESULTS: 6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. CONCLUSION: The errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia Guiada por Imagen/métodos , Movimiento (Física) , Errores de Configuración en Radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA