Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(1): 28-37, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949766

RESUMEN

Type III CRISPR-Cas loci encode some of the most abundant, yet complex, immune systems of prokaryotes. They are composed of a Cas10 complex that uses an RNA guide to recognize transcripts from bacteriophage and plasmid invaders. Target recognition triggers three activities within this complex: ssDNA degradation, synthesis of cyclic oligoadenylates (cOA) that act as second messengers to activate CARF-domain effectors, and cleavage of target RNA. This review covers recent research in type III CRISPR-Cas systems that looked beyond the activity of the canonical Cas10 complexes towards: (i) ancillary nucleases and understanding how they provide defense by sensing cOA molecules; (ii) ring nucleases and their role in regulating cOA production; and (iii) CRISPR-associated proteases, including the function of the Craspase complex in a transcriptional response to phage infection.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ARN , ADN de Cadena Simple , Endonucleasas/genética
2.
J Biol Chem ; 298(2): 101591, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35038453

RESUMEN

RNA interference by type III CRISPR systems results in the synthesis of cyclic oligoadenylate (cOA) second messengers, which are known to bind and regulate various CARF domain-containing nuclease receptors. The CARF domain-containing Csa3 family of transcriptional factors associated with the DNA-targeting type I CRISPR systems regulate expression of various CRISPR and DNA repair genes in many prokaryotes. In this study, we extend the known receptor repertoire of cOA messengers to include transcriptional factors by demonstrating specific binding of cyclic tetra-adenylate (cA4) to Saccharolobus solfataricus Csa3 (Csa3Sso). Our 2.0-Å resolution X-ray crystal structure of cA4-bound full-length Csa3Sso reveals the binding of its CARF domain to an elongated conformation of cA4. Using cA4 binding affinity analyses of Csa3Sso mutants targeting the observed Csa3Sso•cA4 structural interface, we identified a Csa3-specific cA4 binding motif distinct from a more widely conserved cOA-binding CARF motif. Using a rational surface engineering approach, we increased the cA4 binding affinity of Csa3Sso up to ∼145-fold over the wildtype, which has potential applications for future second messenger-driven CRISPR gene expression and editing systems. Our in-solution Csa3Sso structural analysis identified cA4-induced allosteric and asymmetric conformational rearrangement of its C-terminal winged helix-turn-helix effector domains, which could potentially be incompatible to DNA binding. However, specific in vitro binding of the purified Csa3Sso to its putative promoter (PCas4a) was found to be cA4 independent, suggesting a complex mode of Csa3Sso regulation. Overall, our results support cA4-and Csa3-mediated cross talk between type III and type I CRISPR systems.


Asunto(s)
Nucleótidos de Adenina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Oligorribonucleótidos , Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Sistemas CRISPR-Cas , ADN/genética , Modelos Moleculares , Oligorribonucleótidos/química , Oligorribonucleótidos/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
Cell Rep ; 33(12): 108527, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357439

RESUMEN

Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2', 3'-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5' tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair.


Asunto(s)
Operón/inmunología , ARN de Transferencia/metabolismo , ARN/metabolismo , Humanos
4.
Elife ; 92020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32597755

RESUMEN

Type III CRISPR systems detect foreign RNA and activate the cyclase domain of the Cas10 subunit, generating cyclic oligoadenylate (cOA) molecules that act as a second messenger to signal infection, activating nucleases that degrade the nucleic acid of both invader and host. This can lead to dormancy or cell death; to avoid this, cells need a way to remove cOA from the cell once a viral infection has been defeated. Enzymes specialised for this task are known as ring nucleases, but are limited in their distribution. Here, we demonstrate that the widespread CRISPR associated protein Csx3, previously described as an RNA deadenylase, is a ring nuclease that rapidly degrades cyclic tetra-adenylate (cA4). The enzyme has an unusual cooperative reaction mechanism involving an active site that spans the interface between two dimers, sandwiching the cA4 substrate. We propose the name Crn3 (CRISPR associated ring nuclease 3) for the Csx3 family.


Bacteria protect themselves from infections using a system called CRISPR-Cas, which helps the cells to detect and destroy invading threats. The type III CRISPR-Cas system, in particular, is one of the most widespread and efficient at killing viruses. When a bacterium is infected, the CRISPR-Cas system takes a fragment of the genetic material of the virus, and copies it into a molecule. These molecular 'police mugshots' are then loaded into a complex of Cas proteins that patrol the cell, looking for a match and destroying any virus that can be identified. Some Cas proteins also produce alarm signals, called cyclic oligoadenylates (cOAs), which can trigger additional defences. However, this process can damage the genetic material of the bacterium, harming or even killing the cell. Enzymes known as ring nucleases can promptly degrade cOAs and turn off this defence system before it causes harm. However, ring nucleases have only been found in a few species to date; how most bacteria deal with cOA toxicity has remained unknown. Here, Athukoralage et al. set out to determine whether a widespread enzyme known as Csx3, which is often associated with type III CRISPR-Cas systems, could be an alternative off switch for cOA triggered defences. Initial 'test tube' experiments with purified Csx3 proteins confirmed that the enzyme could indeed break down cOAs. A careful dissection of Csx3's molecular structure, using biochemical and biophysical techniques, revealed that it worked by 'sandwiching' a cOA molecule between two co-operating portions of the enzyme. As a final test, Csx3 was introduced into strains of bacteria genetically engineered to have a fully functional Type III CRISPR-Cas system. In these cells, Csx3 successfully turned off the Type III immune response. These results reveal a new way that bacteria avoid the toxic side effects of their own immune defences. Ultimately, this could pave the way for the development of anti-bacterial drugs that work by blocking Csx3 or similar proteins.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ribonucleasas/metabolismo , Archaeoglobus fulgidus/genética , Proteínas Asociadas a CRISPR/metabolismo , Catálisis , Dominio Catalítico , Endonucleasas/metabolismo , Escherichia coli/metabolismo , Cinética , Methanosarcina , Modelos Moleculares , Oligonucleótidos/química , Multimerización de Proteína , ARN/metabolismo , Ribonucleasas/genética , Sistemas de Mensajero Secundario , Transducción de Señal
5.
Front Microbiol ; 11: 602789, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552016

RESUMEN

Type III CRISPR-Cas systems, which are widespread in both bacteria and archaea, provide immunity against DNA viruses and plasmids in a transcription-dependent manner. Since an unprecedented cyclic oligoadenylate (cOA) signaling pathway was discovered in type III systems in 2017, the cOA signaling has been extensively studied in recent 3 years, which has expanded our understanding of type III systems immune defense and also its counteraction by viruses. In this review, we summarized recent advances in cOA synthesis, cOA-activated effector protein, cOA signaling-mediated immunoprotection, and cOA signaling inhibition, and highlighted the crosstalk between cOA signaling and other cyclic oligonucleotide-mediated immunity discovered very recently.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA