Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 1099, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232721

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most malignant brain tumor, with a poor prognosis and life expectancy of 14-16 months after diagnosis. The standard treatment for GBM consists of surgery, radiotherapy, and chemotherapy with temozolomide. Most patients become resistant to treatment after some time, and the tumor recurs. Therefore, there is a need for new drugs to manage GBM. Eslicarbazepine (ESL) is a well-known antiepileptic drug belonging to the dibenzazepine group with anticancer potentials. In this study, for the first time, we evaluated the potential effects of ESL on C6 cell growth, both in vitro and in vivo, and examined its molecular effects. METHODS: To determine the effect of ESL on the c6 cell line, cell viability, proliferation, and migration were evaluated by MTT assay, colony formation, and wound healing assay. Also, apoptosis and cell cycle were examined by flow cytometry, qRT-PCR, and western blotting. In addition, an intracranial model in Wistar rats was used to investigate the effect of ESL in vivo, and the tumor size was measured using both Caliper and MRI. RESULTS: The obtained results are extremely consistent and highly encouraging. C6 cell viability, proliferation, and migration were significantly suppressed in ESL-treated C6 cells (p < 0.001), as determined by cell-based assays. ESL treatment led to significant enhancement of apoptosis (p < 0.01), as determined by flow cytometry, and upregulation of genes involved in cell apoptosis, such as the Bax/Bcl2 ratio at RNA (p < 0.05) and protein levels (5.37-fold). Flow cytometric analysis of ESL-treated cells revealed G2/M phase cell cycle arrest. ESL-treated cells demonstrated 2.49-fold upregulation of p21 alongside, 0.22-fold downregulation of cyclin B1, and 0.34-fold downregulation of cyclin-dependent kinase-1 at the protein level. Administration of ESL (30 mg/kg) to male rats bearing C6 intracranial tumors also suppressed the tumor volume and weight (p < 0.01). CONCLUSIONS: Based on these novel findings, ESL has the potential for further experimental and clinical studies in glioblastoma.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Puntos de Control del Ciclo Celular , Proliferación Celular , Dibenzazepinas , Animales , Ratas , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Dibenzazepinas/farmacología , Dibenzazepinas/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas Wistar , Modelos Animales de Enfermedad , Humanos , Movimiento Celular/efectos de los fármacos , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Nanomedicine (Lond) ; 19(21-22): 1743-1760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041671

RESUMEN

Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.


[Box: see text].


Asunto(s)
Biotina , Nanopartículas , Tamaño de la Partícula , Zeína , Biotina/química , Biotina/farmacocinética , Animales , Zeína/química , Distribución Tisular , Nanopartículas/química , Portadores de Fármacos/química , Ratas , Humanos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos
3.
Rev Neurosci ; 35(2): 183-195, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651618

RESUMEN

Glioblastoma multiform (GBM) is the most common primary brain tumor with a poor prognosis and few therapeutic choices. In vivo, tumor models are useful for enhancing knowledge of underlying GBM pathology and developing more effective therapies/agents at the preclinical level, as they recapitulate human brain tumors. The C6 glioma cell line has been one of the most widely used cell lines in neuro-oncology research as they produce tumors that share the most similarities with human GBM regarding genetic, invasion, and expansion profiles and characteristics. This review provides an overview of the distinctive features and the different animal models produced by the C6 cell line. We also highlight specific applications of various C6 in vivo models according to the purpose of the study and offer some technical notes for more convenient/repeatable modeling. This work also includes novel findings discovered in our laboratory, which would further enhance the feasibility of the model in preclinical GBM investigations.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Modelos Animales
4.
Chin Neurosurg J ; 9(1): 34, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057925

RESUMEN

BACKGROUND: The glioblastoma has served as a valuable experimental model system for investigating the growth and invasive properties of glioblastoma. Aquaporin-1 (AQP1) in facilitating cell migration and potentially contributing to tumor progression. In this study, we analyzed the role of AQP1 overexpression in glioblastoma and elucidated the main mechanisms involved. METHODS: AQP1 overexpression recombinant vector was introduced into C6 rat glioma cells to construct an AQP1 overexpression C6 cell line, and its effect on cell viability and migration ability was detected by MTT and Transwell. RNA was extracted by Trizol method for gene sequencing and transcriptomics analysis, and the differentially expressed genes (DEGs) were enriched for up- and downregulated genes by Principal component analysis (PCA), and the molecular mechanism of AQP1 overexpression was analyzed in comparison with the control group using the NCBI GEO database. Statistical analysis was performed using Mann-Whitney paired two tailed t test. RESULTS: The cell viability of AQP1-transfected cell lines increased by 23% and the mean distance traveled increased by 67% compared with the control group. Quantitative analysis of gene expression showed that there were 12,121 genes with an average transcripts per million (TPM) value greater than 1. DEGs accounted for 13% of the genes expressed, with the highest correlation with upregulated genes being FOXO4 and MAZ, and the highest with downregulated genes being E2F TFs. CONCLUSIONS: AQP1 may be implicated in glioma formation by interacting with the transcriptional regulation networks involving the FOXO4, MAZ, and E2F1/2. These findings shed light on the potential significance of AQP1 in glioma pathogenesis and warrant further investigations to unravel the underlying molecular mechanisms.

5.
Toxicon ; 235: 107325, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838004

RESUMEN

The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 µM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 µM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 µM of AEE from I. carnea or 1000 µM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.


Asunto(s)
Alcaloides , Antineoplásicos , Ipomoea , Animales , Swainsonina/toxicidad , Alcaloides/farmacología , Neuroglía , Extractos Vegetales/toxicidad , Necrosis
6.
Eur J Pharm Sci ; 180: 106338, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410571

RESUMEN

In this study, we prepared a C6 cell membrane-coated doxorubicin conjugated manganese dioxide biomimetic nanomedicine system (MnO2-DOX-C6) for the treatment of glioma. In the glioma microenvironment, manganese dioxide could alleviate tumor hypoxia by promoting the decomposition of hydrogen peroxide (H2O2) to generate oxygen and, through a Fenton-like reaction, increase ROS levels in tumor cells, thus inducing oxidative stress to further kill cancer cells. Doxorubicin and manganese dioxide were connected through a hydrazone bond so that doxorubicin could be released only in the acidic environment of the tumor, which helped to reduce the toxicity and side effects of doxorubicin. Encapsulation of glioma C6 cancer cell membrane in MnO2-DOX-C6 made MnO2-DOX possess the homologous targeting ability and also regulated drug release rate. In vitro release experiments showed that the cumulative release of doxorubicin from MnO2-DOX-C6 at a pH of 5.0 for 48 h was 66.84 ± 3.81%, proving that it had pH sensitivity and a sustained-release effect. Cellular uptake experiments showed that MnO2-DOX-C6 had a good ability to target syngeneic tumor cells. MTT, flow cytometry, Western blot, cell immunofluorescence staining and in vivo antitumor experiments demonstrated that MnO2-DOX-C6 could promote C6 cell apoptosis and inhibit its proliferative ability. These results clearly suggested that MnO2-DOX-C6 may be a promising bionic nanosystem agent for the treatment of glioma.


Asunto(s)
Glioma , Nanopartículas , Humanos , Compuestos de Manganeso/química , Óxidos/química , Peróxido de Hidrógeno , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Glioma/tratamiento farmacológico , Glioma/patología , Nanopartículas/química , Membrana Celular , Línea Celular Tumoral , Microambiente Tumoral
7.
Environ Toxicol ; 37(8): 1968-1978, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35446454

RESUMEN

Iron is an essential metal critical for normal cellular and biochemical function and it is used as a cofactor in many vital biological pathways within the brain. However, accumulation of excess iron in brain is commonly associated with several neurodegenerative and neurotoxic adverse effects. Chronic exposure of iron leads to an increased risk for several neurodegenerative diseases. The exact mechanism of iron-induced neurotoxicity is still unclear. Therefore, our study aimed to investigate the mechanism of neurotoxic and neurodegenerative effects through in vitro exposure of ferrous sulphate in rat C6 cell line. The findings of our study have indicated that ferrous sulphate exposure may lead to induction of molecular markers of neuronal inflammation, apoptotic neuronal cell death, amyloid-beta and hyperphosphorylated tau levels. This study provides a basic mechanistic understanding of signaling pathway and biomarkers involved during iron-induced neurotoxicity.


Asunto(s)
Hierro , Síndromes de Neurotoxicidad , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Hierro/metabolismo , Hierro/toxicidad , Neuronas , Síndromes de Neurotoxicidad/metabolismo , Ratas
8.
Hum Vaccin Immunother ; 18(5): 2044255, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35344464

RESUMEN

An inactivated poliovirus vaccine candidate using Sabin strains (sIPV) grown on the PER.C6® cell line was assessed in infants after demonstrated immunogenicity and safety in adults. The study recruited 300 infants who were randomized (1:1:1:1) to receive one of 3 dose levels of sIPV or a conventional IPV based on Salk strains (cIPV). Poliovirus-neutralizing antibodies were measured before the first dose and 28 days after the third dose. Reactogenicity was assessed for 7 days and unsolicited adverse events (AEs) for 28 days after each vaccination. Serious AEs (SAEs) were recorded throughout the study. Solicited AEs were mostly mild to moderate. None of the SAEs reported in the study were judged vaccine related, including one fatal SAE due to aspiration of vomitus that occurred 26 days after the third dose of low-dose sIPV. After 3 sIPV vaccinations and across all dose levels, seroconversion (SC) rates were at least 92% against Sabin poliovirus types and at least 80% against Salk types, with a dose-response in neutralizing antibody geometric mean titers (GMTs) observed across the 3 sIPV groups. Compared to cIPV, the 3 sIPV groups displayed similar or higher SC rates and GMTs against the 3 Sabin types but showed a lower response against Salk types 1 and 2; this was most visible for Salk type 1. While the PER.C6® cell line-based sIPV showed an acceptable safety profile and immunogenicity in infants, lower seroprotection against type 1 warrants optimization of dose level and additional clinical evaluation.


Asunto(s)
Poliomielitis , Poliovirus , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Línea Celular , Humanos , Inmunogenicidad Vacunal , Lactante , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral/efectos adversos
9.
Turk J Chem ; 46(1): 169-183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38143889

RESUMEN

Isolation and characterization of anticancer activity guided secondary metabolites of endemic Astragalus leucothrix Freyn& Bornm were aimed. Aerial parts of the plant were extracted by maceration method in the solvent system methanol-chloroform (1 : 1) at room temperature. The obtained crude extract was dissolved in purified water. Then, the extract was partitioned with n-hexane, chloroform, ethyl acetate, and n-butanol, respectively. Anticancer activity tests of all the fractions were performed against HeLa and C6 cancer cells. The chloroform fraction that has highest anticancer activity was subjected to chromatographic methods such as column chromatography and thin layer chromatography. Pentyl tetratetracontanoate (1), alfalone (2), 3,6,8-tribromoquinoline (3), and 3,6,8-tribromochromenium (4) molecules were detected from this plant for the first time. The structure determinations of the isolated molecules were elucidated by methods such as 1D and 2D NMR, HPLC - TOF / MS, and GC - MS analysis. Finally, anticancer and cytotoxic activity tests of the compounds were performed. Literature review showed that 3,6,8-tribromochromenium is a new compound. IC50 values of compound 1-2 and compound 3-4 mix were determined to be 4.50 ± 0.10, 2.81 ± 0.00, 4.33 ± 0.00 µM against C6 cell, respectively. The drug likeness properties of 1-4 were obtained by SwissADME. According to Lipinski's rule of five; 2-4 could be a new potential anticancer agent.

10.
Indian J Nucl Med ; 36(3): 267-272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658550

RESUMEN

BACKGROUND: To date, the use of sialic acid that are reported to be elevated during malignancy has been largely unexplored for tumor imaging. The purpose of the present study was to study the modeled stable conformers of n-acetyl neuraminic acid (Neu5Ac) and its radiolabeled conjugate (Tc-99m-Neu5Ac) through computational chemistry approach and its in-vitro bioevaluation in rat C6 cell lines. MATERIALS AND METHODS: The Neu5Ac was radiolabeled with Tc-99m using stannous reduction method and the radiochemical purity of Tc-99m-Neu5Ac was determined by instant thin layer chromatography. A Cheminformatic study of Tc-99m-Neu5Ac was performed by using Marvin application of ChemAxon. Glioma cancer cells were taken to evaluate the cytotoxicity and binding efficacy of Tc-99m-Neu5Ac. RESULTS: Cheminformatic studies exhibited that the most stable conformer of Tc-99m-Neu5Ac is 15 kcal/mol more stable energetically over least stable conformer. The radiochemical yield of Tc-99m labeled Neu5Ac was observed to be greater than 90%. Further, the radiolabeled complex (Tc-99m-Neu5Ac)exhibited specificity for C6 glioma with time and concentration dependent cytotoxicity. CONCLUSION: In conclusion, Tc-99m-Neu5Ac has the potential to be exploited as an in-vivo radionuclide probe for tumor imaging.

11.
Int J Biol Macromol ; 147: 946-953, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31765746

RESUMEN

Scaffolds that are used for neural tissue engineering are fabricated to mimic the extracellular matrix. In this paper, we have fabricated polyvinyl alcohol/sulfated alginate (PVA/SA) nanofibers with different concentrations (10, 20 and 30 wt%) of sulfated alginate by electrospinning technique. The average fibers diameters of 169-488 nm were achieved by electrospinning of polymers blend (PVA/SA). The results of the MTT assay and scanning electron microscopy showed that PVA/sulfated alginate nanofibrous scaffold with 30 wt% SA provided more desirable surface attachment of C6, Schwann cells (SCs) and human bone marrow mesenchymal stem cells (hBMSCs). RT-PCR and immunocytochemistry for MAP-2 marker were conducted to confirm the neural-differentiation of hBMSCs. The expression of MAP-2 confirmed neural differentiation for up to 14 days. Our results showed that PVA/SA nanofibrous scaffold with 30 wt% SA is a suitable substrate for mesenchymal stem cells growth and is capable of inducing neuronal differentiation.


Asunto(s)
Alginatos/química , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Nanofibras/química , Neuronas/metabolismo , Alcohol Polivinílico/química , Andamios del Tejido/química , Células de la Médula Ósea/citología , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Neuronas/citología
12.
Acta Pharmacol Sin ; 41(3): 404-414, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31700088

RESUMEN

Xanthatin is a natural sesquiterpene lactone purified from Xanthium strumarium L., which has shown prominent antitumor activity against a variety of cancer cells. In the current study, we investigated the effect of xanthatin on the growth of glioma cells in vitro and in vivo, and elucidated the underlying mechanisms. In both rat glioma C6 and human glioma U251 cell lines, xanthatin (1-15 µM) dose-dependently inhibited cell viability without apparent effect on the cell cycle. Furthermore, xanthatin treatment dose-dependently induced glioma cell apoptosis. In nude mice bearing C6 glioma tumor xenografts, administration of xanthatin (10, 20, 40 mg·kg-1·d-1, ip, for 2 weeks) dose-dependently inhibited the tumor growth, but did not affect the body weight. More importantly, xanthatin treatment markedly increased the expression levels of the endoplasmic reticulum (ER) stress-related markers in both the glioma cell lines as well as in C6 xenografts, including glucose-regulated protein 78, C/EBP-homologous protein (CHOP), activating factor 4, activating transcription factor 6, spliced X-box binding protein-1, phosphorylated protein kinase R-like endoplasmic reticulum kinase, and phosphorylated eukaryotic initiation factor 2a. Pretreatment of C6 glioma cells with the ER stress inhibitor 4-phenylbutyric acid (4-PBA, 7 mM) or knockdown of CHOP using small interfering RNA significantly attenuated xanthatin-induced cell apoptosis and increase of proapoptotic caspase-3. These results demonstrate that xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating the ER stress-related unfolded protein response pathway involving CHOP induction. Xanthatin may serve as a promising agent in the treatment of human glioma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Furanos/farmacología , Glioma/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Furanos/química , Furanos/aislamiento & purificación , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Ratas , Relación Estructura-Actividad , Células Tumorales Cultivadas , Xanthium/química
13.
Biochem Biophys Res Commun ; 518(2): 325-330, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31421824

RESUMEN

Exosomes are a type of extracellular vesicles derived from cells and mediators of intercellular communication. Different cell types have their own unique exosomes for exchanging information. We previously found that SASH1, a tumor suppressor, was lowly expressed or absent in glioma tissues and glioma C6 cells, but the structure and function of the corresponding exosomes had been unclear. Hence, we aimed to investigate whether exosomes generated from normal glial cells and glioma cells form different protein patterns and whether those derived from normal glial cells affect SASH1 expression in glioma cells. We collected exosomes from astrocytes and C6 cells and identified their exosomal proteins through mass spectrometry. We also performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses, whose results showed that both the total and unique exosomal proteins from each cell type were similar. Moreover, the KEGG analysis revealed different clusters of unique exosomal proteins in glial cells and glioma cells. In the normal glial cells, the top clusters were mainly involved in processes with RNA transcripts and proteins, whereas in glioma cells the clusters were attributed to PI3K-Akt signaling, cell adhesion, and cancer-related pathways. Western blot analysis showed that HMGB1 exists in exosomes derived from cultured astrocytes, although its expression was higher in glioma C6 cells. Furthermore, we found that exosomes extracted from astrocytes could increase SASH1 expression in C6 cells (P = 0.040), whereas those derived from HMGB1-depleted astrocytes could not (P = 0.6133). The expression levels of SASH1 decreased after the addition of extracellular recombinant HMGB1 protein, whereas that of TLR4 increased. Our study is the first to demonstrate that HMGB1 plays different roles depending on its form: as an extracellular protein, HMGB1 decreases SASH1 expression, but as an exosomal protein, HMGB1 increases SASH1 expression. Nevertheless, the mechanism, which partly depends on the TLR4 pathway, behind these opposing effects requires further study. Our novel findings on the structure-dependent roles of the cytokine HMGB1 in promoting or inhibiting cancer provide a fresh insight into the interactions of cancer cells with the microenvironment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Exosomas/genética , Espacio Extracelular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Proteína HMGB1/genética , Proteínas Supresoras de Tumor/genética , Animales , Astrocitos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Ratas , Receptor Toll-Like 4/genética , Regulación hacia Arriba
14.
J Environ Manage ; 223: 1086-1097, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29735295

RESUMEN

In this study, CuO/Cu(OH)2 (denoted as CuONs) nanostructures were synthesized relying to a cheap and rapid chemical co-precipitation method using copper sulfate and liquid ammonia as precursors. Results obtained from X-ray diffraction, and field emission scanning electron microscopy analysis revealed the crystalline nature of synthesized CuONs. Fourier transform infrared spectroscopy and energy dispersive spectroscopy studies showed interactions between copper and oxygen atoms. Synthesized CuONs showed the size in the range of 20-30 nm using high resolution transmission electron microscopy analysis. The photocatalytic degradation performance of Reactive Green 19A (RG19A) dye using CuONs was evaluated. The results showed that CuONs exhibited 98% degradation efficiency after 12 h and also complete mineralization in form of reducing chemical oxygen demand (COD) (84%) and total organic carbon (TOC) (80%). The nanocatalyst was recovered from the dye containing solution and its catalytic activity can be reused up to four times efficiently. CuONs was also able to decolorize actual textile effluent (80% in terms of the American Dye Manufacturers' Institute (ADMI) value) with significant reductions in COD (72%) and TOC (69%). Phytotoxicity studies revealed that the degradation products of RG19A and textile effluent were scarcely toxic in nature, thereby increasing the applicability of CuONs for the treatment of textile wastewater. Additionally, the CuONs showed a maximum antibacterial effect against human pathogens which also displayed synergistic antibacterial potential related to commercial antibiotics. Moreover, CuONs displayed strong antioxidant activity in terms of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC50: 51 µg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) (IC50: 60 µg/mL) radical scavenging. The CuONs exhibited dose dependent response against tumor rat C6 cell line (IC50: 60 µg/mL) and may serve as anticancer agents.


Asunto(s)
Colorantes/aislamiento & purificación , Nanoestructuras , Industria Textil , Purificación del Agua , Animales , Antibacterianos , Catálisis , Cobre , Hidróxidos , Ratas , Espectroscopía Infrarroja por Transformada de Fourier
15.
Saudi Pharm J ; 25(3): 370-375, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28344491

RESUMEN

Neuroinflammation is the commonest cause of neurodegenerative diseases such as Alzheimer's disease. Present investigation evaluates the inhibitory effect of ethanolic root extract of Aster tataricus (AS) on inflammatory mediators production in lipopolysaccharide (LPS) stimulated C6 cells. C6 cells were treated with AS (20 and 40 mg/kg) and nimesulide (NSL, 1.5 µg/ml) for 1 day. Thereafter various parameters such as production of ROS, release of nitrite, MDA, glutathione level and NF-κB translocation were estimated in C6 cell lines. Effect of AS was estimated on the expressions of tumor necrosis factor α (TNF-α) of human monocytic leukemia cell line (THP-1). It was observed that AS (20 and 40 mg/ml) treated group shows significant (p < 0.01) decrease in production of ROS, Nitrite release and MDA level in LPS activated C6 cell lines compared to negative control group. Moreover, treatment with it decreases glutathione level and inhibits the translocation of NF-κB in LPS activated C6 cell lines compared to negative control group. There were significant (p < 0.01) decreases in expression of TNF-α in AS treated group compared to negative control group in THP-1 cell lines. Present investigation concludes the anti neuroinflammatory effect of ethanolic extract of AS root by decreasing oxidative stress and attenuates the cytokine.

16.
Nutr Res Pract ; 10(4): 393-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27478545

RESUMEN

BACKGROUND/OBJECTIVES: Artemisinin, a natural product isolated from Gaeddongssuk (artemisia annua L.) and its main active derivative, dihydroartemisinin (DHA), have long been used as antimalarial drugs. Recent studies reported that artemisinin is efficacious for curing diseases, including cancers, and for improving the immune system. Many researchers have shown the therapeutic effects of artemisinin on tumors such as breast cancer, liver cancer and kidney cancer, but there is still insufficient data regarding glioblastoma (GBM). Glioblastoma accounts for 12-15% of brain cancer, and the median survival is less than a year, despite medical treatments such as surgery, radiation therapy, and chemotherapy. In this study, we investigated the anti-cancer effects of DHA and transferrin against glioblastoma (glioblastoma multiforme, GBM). MATERIALS/METHODS: This study was performed through in vitro experiments using C6 cells. The toxicity dependence of DHA and transferrin (TF) on time and concentration was analyzed by MTT assay and cell cycle assay. Observations of cellular morphology were recorded with an optical microscope and color digital camera. The anti-cancer mechanism of DHA and TF against GBM were studied by flow cytometry with Annexin V and caspase 3/7. RESULTS: MTT assay revealed that TF enhanced the cytotoxicity of DHA against C6 cells. An Annexin V immune-precipitation assay showed that the percentages of apoptosis of cells treated with TF, DHA alone, DHA in combination with TF, and the control group were 7.15 ± 4.15%, 34.3 ± 5.15%, 66.42 ± 5.98%, and 1.2 ± 0.15%, respectively. The results of the Annexin V assay were consistent with those of the MTT assay. DHA induced apoptosis in C6 cells through DNA damage, and TF enhanced the effects of DHA. CONCLUSION: The results of this study demonstrated that DHA, the derivative of the active ingredient in Gaeddongssuk, is effective against GBM, apparently via inhibition of cancer cell proliferation by a pharmacological effect. The role of transferrin as an allosteric activator in the GBM therapeutic efficacy of DHA was also confirmed.

17.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-38012

RESUMEN

BACKGROUND/OBJECTIVES: Artemisinin, a natural product isolated from Gaeddongssuk (artemisia annua L.) and its main active derivative, dihydroartemisinin (DHA), have long been used as antimalarial drugs. Recent studies reported that artemisinin is efficacious for curing diseases, including cancers, and for improving the immune system. Many researchers have shown the therapeutic effects of artemisinin on tumors such as breast cancer, liver cancer and kidney cancer, but there is still insufficient data regarding glioblastoma (GBM). Glioblastoma accounts for 12-15% of brain cancer, and the median survival is less than a year, despite medical treatments such as surgery, radiation therapy, and chemotherapy. In this study, we investigated the anti-cancer effects of DHA and transferrin against glioblastoma (glioblastoma multiforme, GBM). MATERIALS/METHODS: This study was performed through in vitro experiments using C6 cells. The toxicity dependence of DHA and transferrin (TF) on time and concentration was analyzed by MTT assay and cell cycle assay. Observations of cellular morphology were recorded with an optical microscope and color digital camera. The anti-cancer mechanism of DHA and TF against GBM were studied by flow cytometry with Annexin V and caspase 3/7. RESULTS: MTT assay revealed that TF enhanced the cytotoxicity of DHA against C6 cells. An Annexin V immune-precipitation assay showed that the percentages of apoptosis of cells treated with TF, DHA alone, DHA in combination with TF, and the control group were 7.15 ± 4.15%, 34.3 ± 5.15%, 66.42 ± 5.98%, and 1.2 ± 0.15%, respectively. The results of the Annexin V assay were consistent with those of the MTT assay. DHA induced apoptosis in C6 cells through DNA damage, and TF enhanced the effects of DHA. CONCLUSION: The results of this study demonstrated that DHA, the derivative of the active ingredient in Gaeddongssuk, is effective against GBM, apparently via inhibition of cancer cell proliferation by a pharmacological effect. The role of transferrin as an allosteric activator in the GBM therapeutic efficacy of DHA was also confirmed.


Asunto(s)
Anexina A5 , Antimaláricos , Apoptosis , Neoplasias Encefálicas , Neoplasias de la Mama , Ciclo Celular , Proliferación Celular , Daño del ADN , Quimioterapia , Citometría de Flujo , Glioblastoma , Sistema Inmunológico , Técnicas In Vitro , Neoplasias Renales , Neoplasias Hepáticas , Usos Terapéuticos , Transferrina
18.
China Occupational Medicine ; (6): 262-274, 2016.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-876939

RESUMEN

OBJECTIVE: To investigate the role of copper transporter protein and copper chaperones in copper accumulation in glioma cell line C6 cells induced by lead acetate exposure. METHODS: i) CCK-8 assay was used to determine the proper lead acetate dose by treating the cells with lead acetate at the final concentration of 0-50 μmol / L for 24. 0 hours. ii) C6 cells were divided into control group and lead-exposure group,treated with 0 and 10 μmol / L lead acetate respectively for24. 0 hours,and then cultured in 2 μmol / L copper chloride for 0. 0,0. 5,1. 0,2. 0,4. 0 and 8. 0 hours; inductively coupled plasma mass spectrometry was used to detect the levels of copper and lead in the cells. Real-time polymerase chain reaction was used to detect the mRNA expression of copper transporter 1( CTR1),divalent metal transporter 1( DMT1),copper-transporting ATPase α polypeptide / β polypeptide( ATP7 A and ATP7B), antioxidant 1 copper chaperone( ATOX1),cytochrome c oxidase copper chaperone( COX17),and copper-chaperone-for-superoxide dismutase( CCS).Laser con-focal microscopy was applied to detect the protein expression of CTR1 and ATP7 A in cells. RESULTS: i) CCK-8assay proved that the 10 μmol / L lead acetate treatment did not affect C6 cells proliferation( P > 0. 05). Thus the final concentration of 10 μmol / L lead acetate was chosen as the treatment dose in later experiments. ii) After 10 μmol / L lead acetate exposure for 24. 0 hours,the lead and copper levels of C6 cells in lead-exposure group were higher than those in the control group( P < 0. 01),but there was no statistical significant difference in the C6 cell survival rate between these two groups( P > 0. 05). After cells were treated with copper,the C6 cell survival rate of lead-exposure group was lower than that in the control group( P < 0. 01). The interactive effect of copper level showed statistical significance between lead exposure and cooper treatment time( P < 0. 01). At the 5 time points from 0. 5-8. 0 hours after exposure to copper,the copper levels in lead-exposure group were higher than those of control group( P < 0. 05). The copper levels in the control group reached a peak after exposure to copper for 2. 0 hours,and maintained at a stable level till the time point of 8. 0hours. The copper levels of lead-exposed groups increased with the increasing time of copper exposure and there was a time-effect relationship,and they reached to the peak at the time point of 8. 0 hours. After 10 μmol / L lead acetate exposure for 24. 0 hours,compared with control group,the CTR1 and DMT1 mRNA relative expression levels in leadexposed group increased by 113. 00% and 36. 00% respectively( P < 0. 01),and the ATP7 A mRNA relative expression level decreased by 25. 00%( P < 0. 01). The protein expression of CTR1 increased by 76. 04%( P < 0. 01),and the protein expression of ATP7 A decreased by 16. 0%( P < 0. 01). There was no significant difference in the mRNA relative expression levels of ATP7 B,ATOX1,COX17 and CCS between the two groups( P > 0. 05). CONCLUSION: Lead acetate exposure can lead to increase accumulation of copper in C6 cells with increasing exposure time showing a time-effect relationship. The increased protein expression of CTR1 and decreased protein expression of ATP7 A might be one of the mechanisms of inducing copper accumulation in cells after the lead acetate exposure.

19.
Nutr Res Pract ; 9(2): 123-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25861417

RESUMEN

BACKGROUND/OBJECTIVES: Natural products or active components with a protective effect against oxidative stress have attracted significant attention for prevention and treatment of degenerative disease. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from Litchi chinensis Sonn. We investigated the protective effect and its related mechanism of oligonol against oxidative stress. MATERIALS/METHODS: Oxidative stress in C6 glial cells was induced by hydrogen peroxide (H2O2) and the protective effects of oligonol on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) synthesis, and mRNA expression related to oxidative stress were determined. RESULTS: Treatment with oligonol inhibited NO and ROS formation under cellular oxidative stress in C6 glial cells. In addition, it recovered cell viability in a dose dependent-manner. Treatment with oligonol also resulted in down-regulated mRNA expression related to oxidative stress, nuclear factor kappa-B (NF-κB) p65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the control group treated with H2O2. In particular, expression of NF-κB p65, COX-2, and iNOS was effectively reduced to the normal level by treatment with 10 µg/mL and 25 µg/mL of oligonol. CONCLUSIONS: These results indicate that oligonol has protective activity against oxidative stress-induced inflammation. Oligonol might be a promising agent for treatment of degenerative diseases through inhibition of ROS formation and NF-κB pathway gene expression.

20.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-204522

RESUMEN

BACKGROUND/OBJECTIVES: Natural products or active components with a protective effect against oxidative stress have attracted significant attention for prevention and treatment of degenerative disease. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from Litchi chinensis Sonn. We investigated the protective effect and its related mechanism of oligonol against oxidative stress. MATERIALS/METHODS: Oxidative stress in C6 glial cells was induced by hydrogen peroxide (H2O2) and the protective effects of oligonol on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) synthesis, and mRNA expression related to oxidative stress were determined. RESULTS: Treatment with oligonol inhibited NO and ROS formation under cellular oxidative stress in C6 glial cells. In addition, it recovered cell viability in a dose dependent-manner. Treatment with oligonol also resulted in down-regulated mRNA expression related to oxidative stress, nuclear factor kappa-B (NF-kappaB) p65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the control group treated with H2O2. In particular, expression of NF-kappaB p65, COX-2, and iNOS was effectively reduced to the normal level by treatment with 10 microg/mL and 25 microg/mL of oligonol. CONCLUSIONS: These results indicate that oligonol has protective activity against oxidative stress-induced inflammation. Oligonol might be a promising agent for treatment of degenerative diseases through inhibition of ROS formation and NF-kappaB pathway gene expression.


Asunto(s)
Productos Biológicos , Supervivencia Celular , Ciclooxigenasa 2 , Expresión Génica , Peróxido de Hidrógeno , Inflamación , Litchi , Peso Molecular , Neuroglía , FN-kappa B , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II , Estrés Oxidativo , Especies Reactivas de Oxígeno , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA