Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 952: 175897, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222811

RESUMEN

Due to the lack of relatively long-term, high-resolution terrestrial records in tropical southern China, there is limited published research on terrestrial vegetation changes and their responses to regional and/or global climate forcings since the last glacial period. In this study, a 170-cm-long peat core (covering the interval from ~44.1 to 9.3 cal kyr BP) recovered from the Xialu peatland in Leizhou Peninsula, South China, was analyzed for organic carbon isotope (δ13Corg), along with total organic carbon, total nitrogen, and bulk dry density, to investigate past vegetation and hydroclimatic changes. Our results showed that C4 plants dominated the study region during Marine Isotope Stage (MIS) 2 (29-14 cal kyr BP), indicating generally cooler and drier conditions during MIS 2 relative to late MIS 3 (~ 44.1-29 cal kyr BP) and early MIS 1 (14-9.3 cal kyr BP). In particular, the driest conditions occurred during the Last Glacial Maximum (~ 25-19 cal kyr BP) when sea level was at its lowest. In addition, several millennial-scale climatic events associated with the expansion of C4 plants were clearly identified. Our record is sensitive to a variety of glacial-interglacial forcings, including regional processes and global forcing, among which the inundation history of Beibu Gulf due to sea-level change during the late Quaternary, which has been neglected in previous studies, may have played an important role in modulating paleo-hydroclimatic changes in tropical southern China.

2.
Trends Plant Sci ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39025750

RESUMEN

The intricate regulation of flowering time in response to day length has been extensively shown. A recent study has now revealed a similar mechanism for regulating vegetative growth. Wang et al. observed that plants measure daylength as the duration of photosynthesis and metabolite production to modulate vegetative growth.

4.
New Phytol ; 243(6): 2102-2114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38634162

RESUMEN

Mesophyll conductance (gm) is a crucial plant trait that can significantly limit photosynthesis. Measurement of photosynthetic C18O16O discrimination (Δ18O) has proved to be the only viable means of resolving gm in both C3 and C4 plants. However, the currently available methods to exploit Δ18O for gm estimation are error prone due to their inadequacy in constraining the degree of oxygen isotope exchange (θ) during mesophyll CO2 hydration. Here, we capitalized on experimental manipulation of leaf water isotopic dynamics to establish a novel, nonsteady state, regression-based approach for simultaneous determination of gm and θ from online Δ18O measurements. We demonstrated the methodological and theoretical robustness of this new Δ18O-gm estimation approach and showed through measurements on several C3 and C4 species that this approach can serve as a benchmark method against which to identify previously-unrecognized biases of the existing Δ18O-gm methods. Our results highlight the unique value of this nonsteady state-based approach for contributing to ongoing efforts toward quantitative understanding of mesophyll conductance for crop yield improvement and carbon cycle modeling.


Asunto(s)
Células del Mesófilo , Isótopos de Oxígeno , Fotosíntesis , Hojas de la Planta , Agua , Células del Mesófilo/metabolismo , Células del Mesófilo/fisiología , Fotosíntesis/fisiología , Agua/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Análisis de Regresión , Dióxido de Carbono/metabolismo
5.
Plant Physiol Biochem ; 207: 108426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340689

RESUMEN

In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.


Asunto(s)
Complejo de Proteína del Fotosistema I , Zea mays , Complejo de Proteína del Fotosistema I/metabolismo , Zea mays/metabolismo , ATPasas de Translocación de Protón de Cloroplastos , Fotosíntesis/fisiología , Luz , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
6.
Plant Cell Environ ; 47(5): 1716-1731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305579

RESUMEN

As the leading global grain crop, maize significantly impacts agricultural water usage. Presently, photosynthesis ( A net ${A}_{\text{net}}$ ) in leaves of modern maize crops is saturated with CO 2 ${\text{CO}}_{2}$ , implying that reducing stomatal conductance ( g s ${g}_{{\rm{s}}}$ ) would not affect A net ${A}_{\text{net}}$ but reduce transpiration ( τ $\tau $ ), thereby increasing water use efficiency (WUE). While g s ${g}_{{\rm{s}}}$ reduction benefits upper canopy leaves under optimal conditions, the tradeoffs in low light and nitrogen-deficient leaves under nonoptimal microenvironments remain unexplored. Moreover, g s ${g}_{{\rm{s}}}$ reduction increases leaf temperature ( T leaf ${T}_{\text{leaf}}$ ) and water vapor pressure deficit, partially counteracting transpiratory water savings. Therefore, the overall impact of g s ${g}_{{\rm{s}}}$ reduction on water savings remains unclear. Here, we use a process-based leaf model to investigate the benefits of reduced g s ${g}_{{\rm{s}}}$ in maize leaves under different microenvironments. Our findings show that increases in T leaf ${T}_{\text{leaf}}$ due to g s ${g}_{{\rm{s}}}$ reduction can diminish WUE gains by up to 20%. However, g s ${g}_{{\rm{s}}}$ reduction still results in beneficial WUE tradeoffs, where a 29% decrease in g s ${g}_{{\rm{s}}}$ in upper canopy leaves results in a 28% WUE gain without loss in A net ${A}_{\text{net}}$ . Lower canopy leaves exhibit superior tradeoffs in g s ${g}_{{\rm{s}}}$ reduction with 178% gains in WUE without loss in A net ${A}_{\text{net}}$ . Our simulations show that these WUE benefits are resilient to climate change.


Asunto(s)
Hojas de la Planta , Zea mays , Fotosíntesis , Gases , Modelos Teóricos
7.
J Exp Bot ; 75(5): 1451-1464, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37943576

RESUMEN

The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.


Asunto(s)
Celulosa , Poaceae , Poaceae/metabolismo , Celulosa/metabolismo , Isótopos de Carbono , Fotosíntesis/fisiología , Carbono , Hojas de la Planta/metabolismo , Dióxido de Carbono
8.
J Agric Food Chem ; 71(46): 17570-17583, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37933850

RESUMEN

Sorghum (Sorghum bicolor L.) is one of the top five cereal crops in the world in terms of production and planting area and is widely grown in areas with severe abiotic stresses such as drought and saline-alkali land due to its excellent stress resistance. Moreover, sorghum is a rare multipurpose crop that can be classified into grain sorghum, energy sorghum, and silage sorghum according to its domestication direction and utilization traits, endowing it with broad breeding and economic value. In this review, we mainly discuss the latest research progress and regulatory genes of agronomic traits of sorghum as a grain, energy, and silage crop, as well as the future improvement direction of multipurpose sorghum. We also emphasize the feasibility of cultivating multipurpose sorghum through genetic engineering methods by exploring potential targets using wild sorghum germplasm and genetic resources, as well as genomic resources.


Asunto(s)
Grano Comestible , Sorghum , Sorghum/genética , Fitomejoramiento , Productos Agrícolas/genética , Fenotipo
9.
Plants (Basel) ; 12(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631115

RESUMEN

Plant photosynthesis has a non-negligible influence on forage quality and ecosystem carbon sequestration. However, the influence of long-term warming, increasing precipitation, and their interactions on the photosynthesis of dominant species in desert steppe remains unclear, and the main factors regulating plant photosynthesis in desert steppes have remained unrevealed. Therefore, we measured the photosynthetic parameters and specific leaf area of the dominant species and calculated the water and nitrogen content of leaves and soil in a desert steppe after long-term warming and increasing precipitation (air temperature, W0, air temperature increases of 2 °C and 4 °C, W1 and W2; natural precipitation, P0, natural precipitation increases of 25% and 50%, P1 and P2). Results showed that warming and increasing precipitation significantly enhanced photosynthesis in C3 and C4 species (p < 0.05). Compared to W0P0, the net photosynthetic rate of C3 and C4 species in W2P2 increased by 159.46% and 178.88%, respectively. Redundancy analysis showed that soil water content significantly explained the photosynthesis of C3 and C4 plants (the degree of explanation was 48% and 67.7%), followed by soil-available nitrogen content (the degree of explanation was 19.6% and 5.3%). Therefore, our study found that climate change enhanced photosynthesis in C3 and C4 plants, and soil water content plays a critical role in regulating photosynthesis in desert steppes.

10.
PeerJ ; 11: e15696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456874

RESUMEN

Single-cell C4 (SCC4) plants with bienertioid anatomy carry out photosynthesis in a single cell. Chloroplast movement is the underlying phenomenon, where chloroplast unusual positioning 1 (CHUP1) plays a key role. This study aimed to characterize CHUP1 and CHUP1-like proteins in an SCC4 photosynthetic plant, Bienertia sinuspersici. Also, a comparative analysis of SCC4 CHUP1 was made with C3, C4, and CAM model plants including an extant basal angiosperm, Amborella. The CHUP1 gene exists as a single copy from the basal angiosperms to SCC4 plants. Our analysis identified that Chenopodium quinoa, a recently duplicated allotetraploid, has two copies of CHUP1. In addition, the numbers of CHUP1-like and its associated proteins such as CHUP1-like_a, CHUP1-like_b, HPR, TPR, and ABP varied between the species. Hidden Markov Model analysis showed that the gene size of CHUP1-like_a and CHUP1-like_b of SCC4 species, Bienertia, and Suaeda were enlarged than other plants. Also, we identified that CHUP1-like_a and CHUP1-like_b are absent in Arabidopsis and Amborella, respectively. Motif analysis identified several conserved and variable motifs based on the orders (monocot and dicot) as well as photosynthetic pathways. For instance, CAM plants such as pineapple and cactus shared certain motifs of CHUP1-like_a irrespective of their distant phylogenetic relationship. The free ratio model showed that CHUP1 maintained purifying selection, whereas CHUP1-like_a and CHUP1-like_b have adaptive functions between SCC4 plants and quinoa. Similarly, rice and maize branches displayed functional diversification on CHUP1-like_b. Relative gene expression data showed that during the subcellular compartmentalization process of Bienertia, CHUP1 and actin-binding proteins (ABP) genes showed a similar pattern of expression. Altogether, the results of this study provide insight into the evolutionary and functional details of CHUP1 and its associated proteins in the development of the SCC4 system in comparison with other C3, C4, and CAM model plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chenopodiaceae , Magnoliopsida , Filogenia , Cloroplastos/genética , Fotosíntesis , Magnoliopsida/metabolismo , Proteínas de Microfilamentos/genética , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas de Arabidopsis/genética
11.
Plants (Basel) ; 12(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375972

RESUMEN

Reflectance spectroscopy, in combination with machine learning and artificial intelligence algorithms, is an effective method for classifying and predicting pigments and phenotyping in agronomic crops. This study aims to use hyperspectral data to develop a robust and precise method for the simultaneous evaluation of pigments, such as chlorophylls, carotenoids, anthocyanins, and flavonoids, in six agronomic crops: corn, sugarcane, coffee, canola, wheat, and tobacco. Our results demonstrate high classification accuracy and precision, with principal component analyses (PCAs)-linked clustering and a kappa coefficient analysis yielding results ranging from 92 to 100% in the ultraviolet-visible (UV-VIS) to near-infrared (NIR) to shortwave infrared (SWIR) bands. Predictive models based on partial least squares regression (PLSR) achieved R2 values ranging from 0.77 to 0.89 and ratio of performance to deviation (RPD) values over 2.1 for each pigment in C3 and C4 plants. The integration of pigment phenotyping methods with fifteen vegetation indices further improved accuracy, achieving values ranging from 60 to 100% across different full or range wavelength bands. The most responsive wavelengths were selected based on a cluster heatmap, ß-loadings, weighted coefficients, and hyperspectral vegetation index (HVI) algorithms, thereby reinforcing the effectiveness of the generated models. Consequently, hyperspectral reflectance can serve as a rapid, precise, and accurate tool for evaluating agronomic crops, offering a promising alternative for monitoring and classification in integrated farming systems and traditional field production. It provides a non-destructive technique for the simultaneous evaluation of pigments in the most important agronomic plants.

12.
Proc Natl Acad Sci U S A ; 120(27): e2300166120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364120

RESUMEN

The earliest evidence of agriculture in the Horn of Africa dates to the Pre-Aksumite period (ca. 1600 BCE). Domesticated C3 cereals are considered to have been introduced from the Near East, whereas the origin (local or not) and time of domestication of various African C4 species such as sorghum, finger millet, or t'ef remain unknown. In this paper, we present the results of the analysis of microbotanical residues (starch and phytoliths) from grinding stones recovered from two archaeological sites in northeastern Tigrai (Ethiopia), namely Mezber and Ona Adi. Together, both sites cover a time period that encompasses the earliest evidence of agriculture in the region (ca. 1600 BCE) to the fall of the Kingdom of Aksum (ca. 700 CE). Our data indicate that these communities featured complex mixed economies which included the consumption of both domestic and wild plant products since the Initial Pre-Aksumite Phase (ca. 1600 to 900 BCE), including C3 crops and legumes, but also C4 cereals and geophytes. These new data expand the record of C4 plant use in the Horn of Africa to over 1,000 y. It also represents the first evidence for the consumption of starchy products in the region. These results have parallels in the wider northeastern African region where complex food systems have been documented. Altogether, our data represent a significant challenge to our current knowledge of Pre-Aksumite and Aksumite economies, forcing us to rethink the way we define these cultural horizons.


Asunto(s)
Domesticación , Grano Comestible , Productos Agrícolas , Agricultura , Etiopía
13.
Photosynth Res ; 157(2-3): 159-170, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37155083

RESUMEN

I provide here both my personal and scientific autobiography. After giving a background and summary of most of my research, I present information on my parents, my childhood, schooling, university education, and postdoctoral research, all in Australia. This is followed by a presentation of my life and research in Cambridge, UK and then at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in Australia, since 1955, where most of my research was done, especially on photosynthesis which included the following areas: Purification of a protochlorophyllide-protein complex; separation of the photochemical systems of photosynthesis; development of photochemical activity in photosynthesis; protein synthesis in plants; comparative photosynthesis of sun and shade plants; role of chlorophyll b in photosynthesis; photochemical properties of C4 plants; molecular interaction of thylakoid membranes; electron transport and ATP formation; and solar energy conversion in photosynthesis. In addition to research on the basics and applications of photosynthesis, I also mention at the end my service as a member of the executive of CSIRO.


Asunto(s)
Clorofila , Fotosíntesis , Humanos , Niño , Clorofila/metabolismo , Transporte de Electrón , Tilacoides/metabolismo , Luz Solar , Plantas/metabolismo
14.
Cells ; 11(3)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35159356

RESUMEN

The cell wall plays a crucial role in plant growth and development, including in response to environmental factors, mainly through significant biochemical and biomechanical plasticity. The involvement of the cell wall in C4 plants' response to cold is, however, still poorly understood. Miscanthus × giganteus, a perennial grass, is generally considered cold tolerant and, in contrast to other thermophilic species such as maize or sorgo, can maintain a relatively high level of photosynthesis efficiency at low ambient temperatures. This unusual response to chilling among C4 plants makes Miscanthus an interesting study object in cold acclimation mechanism research. Using the results obtained from employing a diverse range of techniques, including analysis of plasmodesmata ultrastructure by means of transmission electron microscopy (TEM), infrared spectroscopy (FTIR), and biomechanical tests coupled with photosynthetic parameters measurements, we present evidence for the implication of the cell wall in genotype-specific responses to cold in this species. The observed reduction in the assimilation rate and disturbance of chlorophyll fluorescence parameters in the susceptible M3 genotype under cold conditions were associated with changes in the ultrastructure of the plasmodesmata, i.e., a constriction of the cytoplasmic sleeve in the central region of the microchannel at the mesophyll-bundle sheath interface. Moreover, this cold susceptible genotype was characterized by enhanced tensile stiffness, strength of leaf wall material, and a less altered biochemical profile of the cell wall, revealed by FTIR spectroscopy, compared to cold tolerant genotypes. These changes indicate that a decline in photosynthetic activity may result from a decrease in leaf CO2 conductance due to the formation of more compact and thicker cell walls and that an enhanced tolerance to cold requires biochemical wall remodelling. Thus, the well-established trade-off between photosynthetic capacity and leaf biomechanics found across multiple species in ecological research may also be a relevant factor in Miscanthus' tolerance to cold. In this paper, we demonstrate that M. giganteus genotypes showing a high degree of genetic similarity may respond differently to cold stress if exposed at earlier growing seasons to various temperature regimes, which has implications for the cell wall modifications patterns.


Asunto(s)
Fotosíntesis , Poaceae , Pared Celular , Frío , Genotipo , Fotosíntesis/genética , Poaceae/genética
15.
Plant Cell Environ ; 45(4): 1257-1269, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048399

RESUMEN

Our understanding of the regulation of respiration in C4 plants, where mitochondria play different roles in the different types of C4 photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (Rdark ), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent rates of Rdark are associated with mitochondrial number, volume and ultrastructure. Based on examination of a single species per C4 type, we found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C4 types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and Rdark . We suggest that Rdark is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.


Asunto(s)
Malato Deshidrogenasa , Malatos , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Frecuencia Respiratoria
16.
New Phytol ; 233(3): 1083-1096, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34669188

RESUMEN

C4 photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis. We explore how evolution of the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C4 NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C4 photosynthesis. Mitochondria in C4 PCK type also provide ATP for C4 metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C4 NADP-ME type and C3 leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C4 species but does not differ systematically among the three C4 types. This review outlines further mitochondrial research in key areas central to the engineering of the C4 pathway into C3 plants and to the understanding of variation in rates of C4 dark respiration.


Asunto(s)
Malato Deshidrogenasa , Fotosíntesis , Dióxido de Carbono/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/fisiología
17.
Front Plant Sci ; 12: 668736, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276729

RESUMEN

Drought stress affects a range of plant processes. It is still not well-known how C3 and C4 plants respond to drought. Here, we used a combination of meta-analysis and network analysis to compare the transcriptional responses of Oryza sativa (rice), a C3 plant, and Zea mays (maize), a C4 plant, to drought stress. The findings showed that drought stress changes the expression of genes and affects different mechanisms in the C3 and C4 plants. We identified several genes that were differentially expressed genes (DEGs) under stress conditions in both species, most of which are associated with photosynthesis, molecule metabolic process, and response to stress. Additionally, we observed that many DEGs physically located within the quantitative trait locus regions are associated with C isotope signature (d13C), photosynthetic gas exchange, and root characteristics traits. Through the gene co-expression and differential co-expression network methods, we identified sets of genes with similar and different behaviors among C3 and C4 plants during drought stress. This result indicates that mitogen-activated protein kinases (MAPK) signaling pathway plays an important part in the differences between the C3 and C4 species. The present study provides a better understanding of the mechanisms underlying the response of C3 and C4 plants to drought stress, which may useful for engineering drought tolerance in plants.

18.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063101

RESUMEN

Photosynthetic organisms commonly develop the strategy to keep the reaction center chlorophyll of photosystem I, P700, oxidized for preventing the generation of reactive oxygen species in excess light conditions. In photosynthesis of C4 plants, CO2 concentration is kept at higher levels around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) by the cooperation of the mesophyll and bundle sheath cells, which enables them to assimilate CO2 at higher rates to survive under drought stress. However, the regulatory mechanism of photosynthetic electron transport for P700 oxidation is still poorly understood in C4 plants. Here, we assessed gas exchange, chlorophyll fluorescence, electrochromic shift, and near infrared absorbance in intact leaves of maize (a NADP-malic enzyme C4 subtype species) in comparison with mustard, a C3 plant. Instead of the alternative electron sink due to photorespiration in the C3 plant, photosynthetic linear electron flow was strongly suppressed between photosystems I and II, dependent on the difference of proton concentration across the thylakoid membrane (ΔpH) in response to the suppression of CO2 assimilation in maize. Linear relationships among CO2 assimilation rate, linear electron flow, P700 oxidation, ΔpH, and the oxidation rate of ferredoxin suggested that the increase of ΔpH for P700 oxidation was caused by the regulation of proton conductance of chloroplast ATP synthase but not by promoting cyclic electron flow. At the scale of intact leaves, the ratio of PSI to PSII was estimated almost 1:1 in both C3 and C4 plants. Overall, the photosynthetic electron transport was regulated for P700 oxidation in maize through the same strategies as in C3 plants only except for the capacity of photorespiration despite the structural and metabolic differences in photosynthesis between C3 and C4 plants.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Zea mays/metabolismo , Oscuridad , Transporte de Electrón , Ferredoxinas/metabolismo , Cinética , Modelos Biológicos , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Teoría Cuántica
19.
Plant Physiol Biochem ; 166: 235-245, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126591

RESUMEN

Nano-sized arsenic oxide nanoparticles (As2O3-NP) limit crop growth and productivity. As2O3-NP represent a strong environmental hazard. The predicted rise in future atmospheric CO2 could boost plant growth both under optimal and heavy metal stress conditions. So far, the phytotoxicity of As2O3-NP and their interaction with eCO2 were not investigated at physiological and metabolic levels in crop species groups such as C3 and C4. We investigated how eCO2 level (620 ppm) alleviated soil As2O3-NP toxicity induced growth and mitigated oxidative damages through analysing photosynthetic parameters, primary (sugars and amino acids) and secondary (phenolics, flavonoids and anthocyanins) metabolism in C3 (barley) and C4 (maize) plants. Compared to maize, barley accumulated higher As2O3-NP level, which inhibited growth and induced oxidative damage particularly in barley (increased H2O2 and lipid peroxidation). Interestingly, eCO2 differently mitigated As2O3-NP toxicity on photosynthesis, which consequently improved sugar metabolism. Moreover, high carbon availability in eCO2 treated plants directed to produce osmo-protectant (soluble sugars and proline) and antioxidants (anthocyanins and tocopherols). In the line with increased proline and anthocyanins, their metabolism was also improved. Notable differences occurred between the two plant species. The ornithine pathway was preferred in maize while in barley proline accumulation was mainly through glutamate pathway. Moreover, under As2O3-NP stress, barley preferentially accumulated anthocyanins while maize accumulated total phenolics and flavonoids. This work contributes to improving our understanding of the differences in growth, physiological and biochemical responses of major crops of two functional photosynthetic groups (C3 and C4 plants) under ambient and elevated CO2 grown under As2O3-NP stress.


Asunto(s)
Arsénico , Hordeum , Nanopartículas , Antocianinas , Dióxido de Carbono , Homeostasis , Peróxido de Hidrógeno , Fotosíntesis , Prolina , Zea mays
20.
Environ Sci Technol ; 55(11): 7256-7265, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34013726

RESUMEN

Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.


Asunto(s)
Ecosistema , Nitrógeno , Carbono , China , Nitrógeno/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA