Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 521: 58-76, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100373

RESUMEN

Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.


Asunto(s)
Sinapsis Eléctricas , Médula Espinal , Ratones , Ratas , Masculino , Femenino , Animales , Sinapsis Eléctricas/metabolismo , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Neuronas Motoras/metabolismo , Uniones Comunicantes/metabolismo , Ratones Transgénicos
2.
Neuroscience ; 485: 91-115, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090881

RESUMEN

Large cholinergic neurons (V0c neurons; aka, partition cells) in the spinal cord project profusely to motoneurons on which they form C-terminal contacts distinguished by their specialized postsynaptic subsurface cisterns (SSCs). The V0c neurons are known to be rhythmically active during locomotion and release of acetylcholine (ACh) from their terminals is known to modulate the excitability of motoneurons in what appears to be a task-dependent manner. Here, we present evidence that a subpopulation of V0c neurons express the gap junction forming protein connexin36 (Cx36), indicating that they are coupled by electrical synapses. Based on immunofluorescence imaging and the use of Cx36BAC-enhanced green fluorescent protein (eGFP) mice in which C-terminals immunolabelled for their marker vesicular acetylcholine transporter (vAChT) are also labelled for eGFP, we found a heterogeneous distribution of eGFP+ C-terminals on motoneurons at cervical, thoracic and lumber spinal levels. The density of C-terminals on motoneurons varied as did the proportion of those that were eGFP+ vs. eGFP-. We present evidence that fast vs. slow motoneurons have a greater abundance of these terminals and fast motoneurons also have the highest density that were eGFP+. Thus, our results indicate that a subpopulation of V0c neurons projects preferentially to fast motoneurons, suggesting that the capacity for synchronous activity conferred by electrical synapses among networks of coupled V0c neurons enhances their dynamic capabilities for synchronous regulation of motoneuron excitability during high muscle force generation. The eGFP+ vs. eGFP- V0c neurons were more richly innervated by serotonergic terminals, suggesting their greater propensity for regulation by descending serotonergic systems.


Asunto(s)
Neuronas Motoras , Médula Espinal , Animales , Colinérgicos , Neuronas Colinérgicas , Conexinas , Ratones , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Proteína delta-6 de Union Comunicante
3.
Dev Dyn ; 248(12): 1180-1194, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512327

RESUMEN

Kv2.1 voltage-gated potassium channels consist of two types of α-subunits: (a) electrically-active Kcnb1 α-subunits and (b) silent or modulatory α-subunits plus ß-subunits that, similar to silent α-subunits, also regulate electrically-active subunits. Voltage-gated potassium channels were traditionally viewed, mainly by electrophysiologists, as regulators of the electrical activity of the plasma membrane in excitable cells, a role that is performed by transmembrane protein domains of α-subunits that form the electric pore. Genetic studies revealed a role for this region of α-subunits of voltage-gated potassium channels in human neurodevelopmental disorders, such as epileptic encephalopathy. The N- and C-terminal domains of α-subunits interact to form the cytoplasmic subunit of heterotetrameric potassium channels that regulate electric pores. Subsequent animal studies revealed the developmental functions of Kcnb1-containing voltage-gated potassium channels and illustrated their role during brain development and reproduction. These functions of potassium channels are discussed in this review in the context of regulatory interactions between electrically-active and regulatory subunits.


Asunto(s)
Crecimiento y Desarrollo/genética , Canales de Potasio Shab/fisiología , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Reproducción/genética
4.
Adv Exp Med Biol ; 964: 255-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315276

RESUMEN

The membrane bound 223 amino acid Sigma-1 Receptor (S1R) serves as a molecular chaperone and functional regulator of many signaling proteins. Spinal cord motor neuron activation occurs, in part, via large ventral horn cholinergic synapses called C-boutons/C-terminals. Chronic excitation of motor neurons and alterations in C-terminals has been associated with Amyotrophic Lateral Sclerosis (ALS ). The S1R has an important role in regulating motor neuron function. High levels of the S1R are localized in postsynaptic endoplasmic reticulum (ER) subsurface cisternae within 10-20 nm of the plasma membrane that contain muscarinic type 2 acetylcholine receptors (M2AChR), calcium activated potassium channels (Kv2.1) and slow potassium (SK) channels. An increase in action potentials in the S1R KO mouse motor neurons indicates a critical role for the S1R as a "brake" on motor neuron function possibly via calcium dependent hyperpolarization mechanisms involving the aforementioned potassium channels. The longevity of SOD-1/S1R KO ALS mice is significantly reduced compared to SOD-1/WT ALS controls. The S1R colocalizes in C-terminals with Indole(ethyl)amine-N-methyl transferase (INMT ), the enzyme that produces the S1R agonist , N,N'- dimethyltryptamine (DMT). INMT methylation can additionally neutralize endogenous toxic sulfur and selenium derivatives thus providing functional synergism with DMT to reduce oxidative stress in motor neurons . Small molecule activation of the S1R and INMT thus provides a possible therapeutic strategy to treat ALS .


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Receptores sigma/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Receptor Sigma-1
5.
J Pharmacol Sci ; 127(1): 10-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25704013

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease affecting spinal cord motoneurons (MN) with an associative connection to Frontotemporal Lobar Dementia (FTLD). The endoplasmic reticulum (ER) bound Sigma-1 Receptor (S1R) chaperone protein localizes to specialized ER cisternae within 10 nm of the plasma membrane in spinal cord ventral horn cholinergic post synaptic C-terminals. Removal of the S1R gene in the Superoxide Dismutase-1 (SOD-1) mouse model of ALS exacerbated the neurodegenerative condition and resulted in a significantly reduced longevity when compared to the SOD-1/S1R wild type (WT) mouse. The proposed amelioration of the ALS phenotype by the S1R is likely due to a "brake" on excitation of the MN as evidenced by a reduction in action potential generation in the MN of the WT when compared to the S1R KO mouse MN. Although the precise signal transduction pathway(s) regulated by the S1R in the MN has/have not been elucidated at present, it is likely that direct or indirect functional interactions occur between the S1R in the ER cisternae with voltage gated potassium channels and/or with muscarinic M2 receptor signaling in the post synaptic plasma membrane. Possible mechanisms for regulation of MN excitability by S1R are discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Receptores sigma/fisiología , Potenciales de Acción/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Ratones Noqueados , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Receptores sigma/genética , Receptor Sigma-1
6.
Neurosci Lett ; 548: 137-42, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23756176

RESUMEN

Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons.


Asunto(s)
Neuronas Colinérgicas/citología , Neuronas Colinérgicas/metabolismo , Proteínas de Homeodominio/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Formación Reticular/citología , Formación Reticular/metabolismo , Factores de Transcripción/metabolismo , Animales , Femenino , Masculino , Ratones Endogámicos ICR , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Proteína del Homeodomínio PITX2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA