Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Mater ; 36(35): e2404371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007276

RESUMEN

Excitonic devices based on interlayer excitons in van der Waals heterobilayers are a promising platform for advancing photoelectric interconnection telecommunications. However, the absence of exciton emission in the crucial telecom C-band has constrained their practical applications. Here, this limitation is addressed by reporting exciton emission at 0.8 eV (1550 nm) in a chemically vapor-deposited, strictly aligned MoTe2/MoS2 heterobilayer, resulting from the direct bandgap transitions of interlayer excitons as identified by momentum-space imaging of their electrons and holes. The decay mechanisms dominated by direct radiative recombination ensure constant emission quantum yields, a basic demand for efficient excitonic devices. The atomically sharp interface enables the resolution of two narrowly-splitter transitions induced by spin-orbit coupling, further distinguished through the distinct Landé g-factors as the fingerprint of spin configurations. By electrical control, the double transitions coupling into opposite circularly-polarized photon modes, preserve or reverse the helicities of the incident light with a degree of polarization up to 90%. The Stark effect tuning extends the emission energy range by over 150 meV (270 nm), covering the telecom C-band. The findings provide a material platform for studying the excitonic complexes and significantly boost the application prospects of excitonic devices in silicon photonics and all-optical telecommunications.

2.
Nano Lett ; 24(28): 8626-8633, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38975638

RESUMEN

Long-range, terrestrial quantum networks require high-brightness single-photon sources emitting in the telecom C-band for maximum transmission rates. For solid-state quantum emitters, the underlying pumping process, i.e., coherent or incoherent excitation schemes, impacts several photon properties such as photon indistinguishability, single-photon purity, and photon number coherence. These properties play a major role in quantum communication applications, the latter in particular for quantum cryptography. Here, we present a versatile telecom C-band single-photon source that is operated coherently and incoherently using two complementary pumping schemes. The source is based on a quantum dot coupled to a circular Bragg grating cavity, whereas coherent (incoherent) operation is performed via the novel SUPER scheme (phonon-assisted excitation). In this way, high end-to-end-efficiencies (ηend) of 5.36% (6.09%) are achieved simultaneously with a small multiphoton contribution g(2)(0) of 0.076 ± 0.001 [g(2)(0) of 0.069 ± 0.001] for coherent (incoherent) operation.

3.
Network ; : 1-31, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804502

RESUMEN

The recent wireless communication systems require high gain, lightweight, low profile, and simple antenna structures to ensure high efficiency and reliability. The existing microstrip patch antenna (MPA) design approaches attain low gain and high return loss. To solve this issue, the geometric dimensions of the antenna should be optimized. The improved Particle Swarm Optimization (PSO) algorithm which is the combination of PSO and simulated annealing (SA) approach (PSO-SA) is employed in this paper to optimize the width and length of the inset-fed rectangular microstrip patch antennas for Ku-band and C-band applications. The inputs to the proposed algorithm such as substrate height, dielectric constant, and resonant frequency and outputs are optimized for width and height. The return loss and gain of the antenna are considered for the fitness function. To calculate the fitness value, the Feedforward Neural Network (FNN) is employed in the PSO-SA approach. The design and optimization of the proposed MPA are implemented in MATLAB software. The performance of the optimally designed antenna with the proposed approach is evaluated in terms of the radiation pattern, return loss, Voltage Standing Wave Ratio (VSWR), gain, computation time, directivity, and convergence speed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38655785

RESUMEN

Ca-substituted Ba1-xCaxMg2Al6Si9O30 ceramics were prepared to explore the relationships among their crystal structural parameters, phase compositions, dielectric properties, and coefficients of thermal expansion and applications in C-band antenna. The maximum solubility of Ba1-xCaxMg2Al6Si9O30 was located at x = 0.25, and Ba1-xCaxMg2Al6Si9O30 ceramics (0 ≤ x ≤ 0.25) crystallized in the space group P6/mcc. In Ba1-xCaxMg2Al6Si9O30 single-phase ceramics, εr was dominated by ionic polarizability and "rattling effects" of Ba2+ and Al(2)3+; Q × f was controlled by the roundness of [Si4Al2O18] inner rings and total lattice energy; and τf was affected by the bond valence of Si/Al(1)-O(1). Notably, the low average coefficients of thermal expansion (2.668 ppm/°C) at -150 °C ≤ T ≤ 850 °C and near-zero coefficients of thermal expansion (1.254 ppm/°C) at -150 °C ≤ T ≤ 260 °C were achieved for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic. Optimum microwave and terahertz dielectric properties were obtained for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic with εr = 5.80, Q × f = 31,174 at 13.99 GHz, τf = -7.10 ppm/°C, and εr = 5.71-5.85 at 0.2 THz ≤ f ≤ 1.0 THz. Also, the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic substrate had been designed as a C-band patch antenna with a high simulated radiation efficiency (87.76%) and gain (6.30 dBi) at 7.70 GHz (|S11| = -38.41 dB).

5.
Micromachines (Basel) ; 15(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38398899

RESUMEN

This paper presents a highly integrated C-band RF transceiver front-end design consisting of two Single Pole Double Throw (SPDT) transmit/receive (T/R) switches, a Low Noise Amplifier (LNA), and a Power Amplifier (PA) for Ultra-Wideband (UWB) positioning system applications. When fabricated using a 0.25 µm GaAs pseudomorphic high electron mobility transistor (pHEMT) process, the switch is optimized for system isolation and stability using inductive resonance techniques. The transceiver front-end achieves overall bandwidth expansion as well as the flat noise in receive mode using the bandwidth expansion technique. The results show that the front-end modules (FEM) have a typical gain of 22 dB in transmit mode, 18 dB in receive mode, and 2 dB noise in the 4.5-8 GHz band, with a chip area of 1.56 × 1.46 mm2. Based on the available literature, it is known that the proposed circuit is the most highly integrated C-band RF transceiver front-end design for UWB applications in the same process.

6.
Cytogenet Genome Res ; 164(1): 33-42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38402854

RESUMEN

INTRODUCTION: Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS: This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS: We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION: Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.


Asunto(s)
Cariotipo , Roedores , Animales , Brasil , Roedores/genética , Roedores/clasificación , Cariotipificación , Masculino , Bandeo Cromosómico , Femenino , Cromosomas de los Mamíferos/genética , Filogenia
7.
Nano Lett ; 24(5): 1746-1752, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38286024

RESUMEN

Bright, polarized, and high-purity single-photon sources in telecom wavelengths are crucial components in long-distance quantum communication, optical quantum computation, and quantum networks. Semiconductor InAs/InP quantum dots (QDs) combined with photonic cavities provide a competitive path, leading to optimal single-photon sources in this range. Here, we demonstrate a bright and polarized single-photon source operating in the telecom C-band based on an elliptical Bragg grating (EBG) cavity. With a significant Purcell enhancement of 5.25 ± 0.05, the device achieves a polarization ratio of 0.986, a single-photon purity of g2(0) = 0.078 ± 0.016, and a single-polarized photon collection efficiency of ∼24% at the first lens (NA = 0.65) without blinking. These findings suggest that C-band QD-based single-photon sources are potential candidates for advancing quantum communication.

8.
J Magn Reson ; 358: 107603, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142565

RESUMEN

In this paper, we present a chip-based C-band ODNP platform centered around an NMR-on-a-chip transceiver and a printed microwave (MW) Alderman-Grant (AG) coil with a broadband tunable frequency range of 528MHz. The printable ODNP probe is optimized for a high input-power-to-magnetic-field conversion-efficiency, achieving a measured ODNP enhancement factor of -151 at microwave power levels of 33.3dBm corresponding to 2.1W. NMR measurements with and without microwave irradiation verify the functionality and the state-of-the-art performance of the proposed ODNP platform. The wide tuning range of the system allows for indirect measurements of the EPR signal of the DNP agent by sweeping the microwave excitation frequency and recording the resulting NMR signal. This feature can, e.g., be used to detect line broadening of the DNP agent. Moreover, we demonstrate experimentally that the wide tuning range of the new ODNP platform can be used to perform multi-tone microwave excitation for further signal enhancement: Using a 10mM TEMPOL solution, we improved the enhancement by a factor of two.

9.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139580

RESUMEN

In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character "" (phonetically represented as "Wang") and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a -10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3-4.2 GHz), N78 (3.3-3.8 GHz), and N79 (4.4-5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing.

10.
Heliyon ; 9(7): e17404, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449167

RESUMEN

For ISM, WLAN, and C-band applications, a multiple-stub loaded CPW feed tri-band antenna is presented in this study. The suggested antenna uses Rogers RT/Duroid 5880 substrate material with a 0.79 mm thickness. The antenna has a straightforward design, measures just 33 mm × 20 mm, and provides broad performance with excellent gain. A 4-port MIMO arrangement is subsequently used to fulfill the demands of upcoming 5G and 6G devices. The MIMO antenna contains little space between elements and offers a good value of < -30 dB isolation. The overall size of a 4-port MIMO antenna is MW × ML × H = 60 mm × 60 mm × 0.79 mm and offers a minimum value of ECC <0.0001. Besides ECC, the MIMO antenna also offers good results in terms of DG, CCL, and MEG. To validate the findings of the simulation, a hardware prototype of the suggested antenna is created. It is clear that the results from simulations and measurements coincide well. The proposed antenna was created with the aid of the software tool Ansoft HFSSv9. Also, the proposed work is evaluated against previously published material. The suggested antenna has a small size, a simple geometry, a wideband, high gain, and a good value for the MIMO parameters, according to the results and comparisons of the proposed work (in terms of ECC, DG, CCL, and MEG), and low spacing between elements, which makes it a promising candidate for future 5G devices operating over ISM, WLAN, and C-band applications.

11.
ACS Appl Mater Interfaces ; 14(43): 48897-48906, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36268902

RESUMEN

Vanadium(V)-substituted cerium niobate [Ce(Nb1-xVx)O4, CNVx] ceramics were prepared to explore their structure-microwave (MW) property relations and application in C-band dielectric resonator antennas (DRAs). X-ray diffraction and Raman spectroscopy revealed that CNVx (0.0 ≤ x ≤ 0.4) ceramics exhibited a ferroelastic phase transition at a critical content of V (xc = 0.3) from a monoclinic fergusonite structure to a tetragonal scheelite structure (TF-S), which decreased in temperature as a function of x according to thermal expansion analysis. Optimum microwave dielectric performance was obtained for CNV0.3 with permittivity (εr) of ∼16.81, microwave quality factor (Qf) of ∼41 300 GHz (at ∼8.7 GHz), and temperature coefficient of the resonant frequency (TCF) of ∼ -3.5 ppm/°C. εr is dominated by Ce-O phonon absorption in the microwave band; Qf is mainly determined by the porosity, grain size, and proximity of TF-S; and TCF is controlled by the structural distortions associated with TF-S. Terahertz (THz) (0.20-2.00 THz, εr ∼ 12.52 ± 0.70, and tan δ ∼ 0.39 ± 0.17) and infrared measurements are consistent, demonstrating that CNVx (0.0 ≤ x ≤ 0.4) ceramics are effective in the sub-millimeter as well as MW regime. A cylindrical DRA prototype antenna fabricated from CNV0.3 resonated at 7.02 GHz (|S11| = -28.8 dB), matching simulations, with >90% radiation efficiency and 3.34-5.93 dB gain.

12.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146237

RESUMEN

This work presents a dual-wavelength C-band erbium-doped fiber laser assisted by an artificial backscatter reflector. This fiber-based reflector, inscribed by femtosecond laser direct writing, was fabricated into a single mode fiber with a length of 32 mm. The dual-wavelength laser obtained, centered at 1527.7 nm and 1530.81 nm, showed an optical signal-to-noise ratio over 46 dB when pumped at 150 mW. Another feature of this laser was that the power difference between the two channels was just 0.02 dB, regardless of the pump power, resulting in a dual emission laser with high equalization. On the other hand, an output power level and a central wavelength instability as low as 0.3 dB and 0.01 nm were measured, in this order for both channels. Moreover, the threshold pump power was 40 mW. Finally, the performance of this dual-wavelength fiber laser enhanced with a random reflector for sensing applications was studied, achieving the simultaneous measurement of strain and temperature with sensitivities around 1 pm/µÎµ and 9.29 pm/°C, respectively.

13.
Micromachines (Basel) ; 13(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35457882

RESUMEN

Development of satellite and radar applications has been continuously studied to reach the demand in the recent communication technology. In this study, a new oval-square-shaped split-ring resonator with left-handed metamaterial properties was developed for C-band and X-band applications. The proposed metamaterial was fabricated on 9 × 9 × 0.508 mm3 size of Rogers RO4003C substrate. The proposed metamaterial structure was designed and simulated using Computer Simulation Technique (CST) Microwave Studio with the frequency ranging between 0 to 12 GHz. The simulated result of the proposed design indicated dual resonance frequency at 5.52 GHz (C-band) and 8.81 GHz (X-band). Meanwhile, the experimental result of the proposed design demonstrated dual resonance frequency at 5.53 GHz (C-band) and 8.31 GHz (X-band). Therefore, with a slight difference in the dual resonance frequency, the simulated result corresponded to the experimental result. Additionally, the proposed design exhibited the ideal properties of electromagnetic which is left-handed metamaterial (LHM) behavior. Hence, the metamaterial structure is highly recommended for satellite and radar applications.

14.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883988

RESUMEN

We proposed a differential fiber-optic refractive index sensor based on coupled plasmon waveguide resonance (CPWR) in the C-band. The sensor head is a BK7 prism coated with ITO/Au/ITO/TiO2 film. CPWR is excited on the film by the S-polarized components of an incident light. The narrow absorption peak of CPWR makes it possible to realize dual-wavelength differential intensity (DI) interrogation by using only one incident point. To implement DI interrogation, we used a DWDM component to sample the lights with central wavelengths of 1529.55 and 1561.42 nm from the lights reflected back by the sensor head. The intensities of the dual-wavelength lights varied oppositely within the measurement range of refractive index, thus, a steep slope was produced as the refractive index of the sample increased. The experimental results show that the sensitivity is 32.15/RIUs within the measurement range from 1.3584 to 1.3689 and the resolution reaches 9.3 × 10-6 RIUs. Benefiting from the single incident point scheme, the proposed sensor would be easier to calibrate in bio-chemical sensing applications. Moreover, this sensing method is expected to be applied to retro-reflecting SPR sensors with tapered fiber tip to achieve better resolution than wavelength interrogation.

15.
Glob Chang Biol ; 27(24): 6467-6483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498351

RESUMEN

The responses of forest carbon dynamics to fluctuations in environmental conditions at a global scale remain elusive. Despite the understanding that favourable environmental conditions promote forest growth, these responses have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of aboveground biomass (AGB) estimated from radar satellites between 1992 and 2018, we present forest carbon changes and provide insights on their sensitivities to environmental conditions across scales. Our findings indicate differences in forest carbon changes across AGB classes, with regions with carbon stocks of 50-125 MgC ha-1 depict the highest forest carbon gains and losses, while regions with 125-150 MgC ha-1  have the lowest forest carbon gains and losses in absolute terms. Net forest carbon change estimates show that the arc-of-deforestation and the Congo Basin were the main hotspots of forest carbon loss, while a substantial part of European forest gained carbon during the last three decades. Furthermore, we observe that changes in forest carbon stocks were systematically positively correlated with changes in forest cover fraction. At the same time, it was not necessarily the case with other environmental variables, such as air temperature and water availability at the bivariate level. We also used a model attribution method to demonstrate that atmospheric conditions were the dominant control of forest carbon changes (56% of the total study area) followed by water-related (29% of the total study area) and vegetation (15% of the total study area) conditions. Regionally, we find evidence that carbon gains from long-term forest growth covary with long-term carbon sinks inferred from atmospheric inversions. Our results describe the contributions from the atmosphere, water-related and vegetation conditions to forest carbon changes and provide new insights into the underlying mechanisms of the coupling between forest growth and the global carbon cycle.


Asunto(s)
Carbono , Árboles , Biomasa , Secuestro de Carbono , Ecosistema , Bosques
16.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502660

RESUMEN

Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as a routine tool for certain critical application areas, such as the assessment of millimetre-scale differential displacements in airport runways, is still debated. This research aims to demonstrate the viability of using medium-resolution Copernicus ESA Sentinel-1A (C-Band) SAR products and their contribution to improve current maintenance strategies in case of localised foundation settlements in airport runways. To this purpose, "Runway n.3" of the "Leonardo Da Vinci International Airport" in Fiumicino, Rome, Italy was investigated as an explanatory case study, in view of historical geotechnical settlements affecting the runway area. In this context, a geostatistical study is developed for the exploratory spatial data analysis and the interpolation of the Sentinel-1A SAR data. The geostatistical analysis provided ample information on the spatial continuity of the Sentinel 1 data in comparison with the high-resolution COSMO-SkyMed data and the ground-based topographic levelling data. Furthermore, a comparison between the PSI outcomes from the Sentinel-1A SAR data-interpolated through Ordinary Kriging-and the ground-truth topographic levelling data demonstrated the high accuracy of the Sentinel 1 data. This is proven by the high values of the correlation coefficient (r = 0.94), the multiple R-squared coefficient (R2 = 0.88) and the Slope value (0.96). The results of this study clearly support the effectiveness of using Sentinel-1A SAR data as a continuous and long-term routine monitoring tool for millimetre-scale displacements in airport runways, paving the way for the development of more efficient and sustainable maintenance strategies for inclusion in next generation Airport Pavement Management Systems (APMSs).


Asunto(s)
Aeropuertos , Radar , Interferometría , Italia
17.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 33(3): 297-300, 2021 May 28.
Artículo en Chino | MEDLINE | ID: mdl-34286533

RESUMEN

OBJECTIVE: To investigate the karyotypes and C bands of Triatoma rubrofasciata in China, so as to understand its chromosome number, morphology and C-band staining of T. rubrofasciata. METHODS: The testis specimens were sampled from male T. rubrofasciata collected from Shunde City, Guangdong Province, prepared into slides of metaphase chromosomes and subjected to Giemsa staining and C-band staining. The morphology of metaphase chromosomes and the location of heterochromatin were observed using microscopy, and the long arm and short arm of each chromosome and total chromosome length were recorded to analyze the karyotypes and C bands of T. rubrofasciata. RESULTS: The male T. rubrofasciata presented a chromosome number of 2n = 25, including 22 autosomes and 3 sex chromosomes. The relative length of chromosomes ranged from 3.59% to 12.76%, the arm ratio was 1.06 to 1.24, and the centromere index was 44.76% to 48.47%. All chromosomes were metacentric chromosomes and the karyotype formula was 2n = 22 metacentric + X1X2Y, and the C bands varied on different chromosomes. No heterochromatin was found in the X chromosome, and the overall staining appeared pale, while heterochromatin was detected in all regions of the Y chromosome, and the overall staining appeared dark. In addition, heterochromatin was present in both ends of the autosome. CONCLUSIONS: The male T. rubrofasciata presents a chromosome number of 2n = 25 in China, and the karyotype formula is 2n = 22 metacentric + X1X2Y. C-banding shows dark staining of the Y chromosome, pale staining of the X chromosome, and dark staining of both ends of the autosome. Our data may provide insights into the investigation on the origin, evolution and gene mapping of T. rubrofasciata in China.


Asunto(s)
Triatoma , Animales , China , Heterocromatina , Cariotipo , Cariotipificación , Masculino , Triatoma/genética
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-882036

RESUMEN

Objective To investigate the karyotypes and C bands of Triatoma rubrofasciata in China, so as to understand its chromosome number, morphology and C-band staining of T. rubrofasciata. Methods The testis specimens were sampled from male T. rubrofasciata collected from Shunde City, Guangdong Province, prepared into slides of metaphase chromosomes and subjected to Giemsa staining and C-band staining. The morphology of metaphase chromosomes and the location of heterochromatin were observed using microscopy, and the long arm and short arm of each chromosome and total chromosome length were recorded to analyze the karyotypes and C bands of T. rubrofasciata. Results The male T. rubrofasciata presented a chromosome number of 2n = 25, including 22 autosomes and 3 sex chromosomes. The relative length of chromosomes ranged from 3.59% to 12.76%, the arm ratio was 1.06 to 1.24, and the centromere index was 44.76% to 48.47%. All chromosomes were metacentric chromosomes and the karyotype formula was 2n = 22 metacentric + X1X2Y, and the C bands varied on different chromosomes. No heterochromatin was found in the X chromosome, and the overall staining appeared pale, while heterochromatin was detected in all regions of the Y chromosome, and the overall staining appeared dark. In addition, heterochromatin was present in both ends of the autosome. Conclusions The male T. rubrofasciata presents a chromosome number of 2n = 25 in China, and the karyotype formula is 2n = 22 metacentric + X1X2Y. C-banding shows dark staining of the Y chromosome, pale staining of the X chromosome, and dark staining of both ends of the autosome. Our data may provide insights into the investigation on the origin, evolution and gene mapping of T. rubrofasciata in China.

19.
Nanomaterials (Basel) ; 10(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255679

RESUMEN

One of the most common techniques for increasing data bitrate using the telecommunication system is to use dense wavelength division multiplexing (DWDM). However, the implementation of DWDM with more channels requires additional waveguide coupler devices and greater energy consumption, which can limit the system performances. To solve these issues, we propose a new approach for designing the demultiplexer using angled multimode interference (AMMI) in gallium nitride (GaN)-silica (SiO2) slot waveguide structures. SiO2 and GaN materials are selected for confining the infrared light inside the GaN areas under the transverse electric (TE) field mode. The results show that, after 3.56 mm light propagation, three infrared wavelengths in the C-band can be demultiplexed using a single AMMI coupler with a power loss of 1.31 to 2.44 dB, large bandwidth of 12 to 13.69 nm, very low power back reflection of 47.64 to 48.76 dB, and crosstalk of -12.67 to -15.62 dB. Thus, the proposed design has the potential for improving performances in the telecommunication system that works with DWDM technology.

20.
ACS Nano ; 14(3): 3519-3527, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32083840

RESUMEN

Photodiodes and integrated optical receivers operating at 1.55 micrometer (µm) wavelength are crucial for long-haul communication and data transfer systems. In this paper, we report C-band InAs quantum dash (Qdash) waveguide photodiodes (PDs) with a record-low dark current of 5 pA, a responsivity of 0.26 A/W at 1.55 µm, and open eye diagrams up to 10 Gb/s. These Qdash-based PDs leverage the same epitaxial layers and processing steps as Qdash lasers and can thus be integrated with laser sources for power monitors or amplifiers for preamplified receivers, manifesting themselves as a promising alternative to their InGaAs and Ge counterparts in low-power optical communication links.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA