Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401420, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162002

RESUMEN

As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.

2.
Small ; 20(29): e2311041, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342590

RESUMEN

The directional conversion of methane to ethylene is challenging due to the dissociation of the C─H bond and the self-coupling of methyl intermediates. Herein, a novel W/WO3- x catalyst with the fork vein structure consisting of an alternating arrangement of WO3- x and W is developed. Impressively, the catalyst achieves an unprecedented C2H4 yield of 1822.73 µmol g-1 h-1, with a selectivity of 82.49%. The enhanced catalytic activity is ascribed to the multifunctional synergistic effect induced by oxygen vacancies and W sites in W/WO3- x. Oxygen vacancies provide abundant coordination of unsaturation sites, which promotes the adsorption and activation of CH4, thus reducing the dissociation energy barrier of the C─H bond. The CH2 coupling barrier on the metal W surface is significantly lower compared to WO3, so CH2 can migrate to the W site for coupling. Importantly, the W/WO3- x with high periodicity provides multiple ordered local microelectric fields, and CH2 intermediates with dipole moments undergo orientation polarization and displacement polarization driven by the electric field, thus enabling CH2 migration. This work opens a new avenue for the structural design and modulation of photocatalysts, and provides new perspectives on the migration of methylene between multiple active sites.

3.
ACS Appl Mater Interfaces ; 15(46): 53604-53613, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37937526

RESUMEN

Hybrid halide perovskites (HHPs), whose every branch generates intrusiveness, have been utilized in solar cells from a broader perspective. However, the inclusiveness of employing HHP as a photocatalyst is in its initial stage. This study mainly focuses on the unexpected utilization of, so far, undesirable material vacancy-ordered MA2SnBr6 quantum dots synthesized from MASnBr3 nanosheets. Here, the quantum confinement grounded a large blue shift in ultraviolet (UV) and photoluminescence (PL) spectra with a Stokes shift of 420 meV, where the band gap increase is observed as size decreases in MA2SnBr6. Remarkably, MA2SnBr6 exhibits air and moisture stability, better charge transfer, and high oxidation potential compared to MASnBr3. The first-principles-based atomistic computations reveal the strain relaxation in the Sn-Br framework that structurally stabilizes the MA2SnBr6 lattice. Furthermore, the direct band gap and strongly localized valence band edge give rise to a new potential photocatalyst MA2SnBr6 for efficient solar-driven C(sp3)─H activation of cyclohexane and toluene under ambient conditions.

4.
J Comput Chem ; 42(27): 1920-1928, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34448235

RESUMEN

Norcarane hydroxylation by neutral [PorMn(V)O-L] (L═OH- , F- ) and cationic [PorMn(V)O-L]+ (L═H2 O, imidazole) oxoMn(V) porphyrin complex models has been investigated by density functional theory calculations to better understand the reaction mechanism and electronic structure. We found that the energy barriers of norcarane hydroxylation by cationic oxoMn(V) porphyrin complexes are lower than those by neutral oxoMn(V) porphyrin complexes. This indicates that cationic oxoMn(V) porphyrin complexes enhance norcarane hydroxylation compared with neutral oxoMn(V) porphyrin complexes. According to electronic structure analysis, in the C─H activation step, electron transfer occurs through initial interaction between the σCH and rich-oxygen π(Mn═O) orbitals to form real donor orbitals, followed by transfer to the acceptor π*(Mn═O) orbitals. Moreover, single electron shifts from norcarane (CH) to Mn atom during C─H activation. The positive charge of the cationic complex stabilizes the acceptor orbital more than the donor orbital, reducing the energy gap between these orbitals, thus lowering the reaction barrier.

5.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443649

RESUMEN

The three complexes [M(Me2dpb)Cl] (M = Ni, Pd, Pt) containing the tridentate N,C,N-cyclometalating 3,5-dimethyl-1,5-dipyridyl-phenide ligand (Me2dpb-) were synthesised using a base-assisted C‒H activation method. Oxidation potentials from cyclic voltammetry increased along the series Pt < Ni < Pd from 0.15 to 0.74 V. DFT calculations confirmed the essentially ligand-centred π*-type character of the lowest unoccupied molecular orbital (LUMO) for all three complexes in agreement with the invariant reduction processes. For the highest occupied molecular orbitals (HOMO), contributions from metal dyz, phenyl C4, C2, C1, and C6, and Cl pz orbitals were found. As expected, the dz2 (HOMO-1 for Ni) is stabilised for the Pd and Pt derivatives, while the antibonding dx2-y2 orbital is de-stabilised for Pt and Pd compared with Ni. The long-wavelength UV-vis absorption band energies increase along the series Ni < Pt < Pd. The lowest-energy TD-DFT-calculated state for the Ni complex has a pronounced dz2-type contribution to the overall metal-to-ligand charge transfer (MLCT) character. For Pt and Pd, the dz2 orbital is energetically not available and a strongly mixed Cl-to-π*/phenyl-to-π*/M(dyz)-to-π* (XLCT/ILCT/MLCT) character is found. The complex [Pd(Me2dpb)Cl] showed a structured emission band in a frozen glassy matrix at 77 K, peaking at 468 nm with a quantum yield of almost unity as observed for the previously reported Pt derivative. No emission was observed from the Ni complex at 77 or 298 K. The TD-DFT-calculated states using the TPSSh functional were in excellent agreement with the observed absorption energies and also clearly assessed the nature of the so-called "dark", i.e., d‒d*, excited configurations to lie low for the Ni complex (≥3.18 eV), promoting rapid radiationless relaxation. For the Pd(II) and Pt(II) derivatives, the "dark" states are markedly higher in energy with ≥4.41 eV (Pd) and ≥4.86 eV (Pt), which is in perfect agreement with the similar photophysical behaviour of the two complexes at low temperatures.

6.
J Enzyme Inhib Med Chem ; 36(1): 895-902, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33771084

RESUMEN

Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki-Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C-H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Estrona/farmacología , Elementos de Transición/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Estrona/análogos & derivados , Estrona/química , Humanos , Ratones , Microondas , Estructura Molecular , Células 3T3 NIH , Relación Estructura-Actividad
7.
Molecules ; 25(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326406

RESUMEN

3d transition metals-catalyzed C-H bond functionalizations represent nowadays an important tool in organic synthesis, appearing as the most promising alternative to cross-coupling reactions. Among 3d transition metals, iron found widespread application due to its availability and benign nature, and it was established as an efficient catalyst in organic synthesis. In this context, the use of ortho-orientating directing groups (DGs) turned out to be necessary for promoting selective iron-catalyzed C-H functionalization reactions. Very recently, triazoles DGs were demonstrated to be more than an excellent alternative to the commonly employed 8-aminoquinoline (AQ) DG, as a result of their modular synthesis as well as the mild reaction conditions applied for their removal. In addition, their tunable geometry and electronics allowed for new unprecedented reactivities in iron-catalyzed C-H activation methodologies that will be summarized within this review.


Asunto(s)
Carbono/química , Hidrógeno/química , Hierro/química , Triazoles/química , Alcadienos/química , Alquilación , Alquinos/química , Catálisis
8.
J Labelled Comp Radiopharm ; 59(12): 476-483, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27593893

RESUMEN

3-Hydroxycyclopent-1-ene-1-carboxylic acid (HOCPCA (1)) is a potent ligand for high-affinity γ-hydroxybutyric acid binding sites in the central nervous system. Various approaches to the introduction of a hydrogen label onto the HOCPCA skeleton are reported. The outcomes of the feasible C─H activation of olefin carbon (C-2) by iridium catalyst are compared with the reduction of the carbonyl group (C-3) by freshly prepared borodeuterides. The most efficient iridium catalysts proved to be Kerr bulky phosphine N-heterocyclic species providing outstanding deuterium enrichment (up to 91%) in a short period of time. The highest deuterium enrichment (>99%) was achieved through the reduction of ketone precursor 2 by lithium trimethoxyborodeuteride. Hence, analogical conditions were used for the tritiation experiment. [3 H]-HOCPCA selectively labeled on the position C-3 was synthetized with radiochemical purity >99%, an isolated yield of 637 mCi and specific activity = 28.9 Ci/mmol.


Asunto(s)
Boro/química , Medición de Intercambio de Deuterio , Deuterio/química , Hidroxibutiratos/química , Iridio/química , Tritio/química , Alquenos/química , Catálisis , Marcaje Isotópico , Ligandos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA