Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Dis ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254846

RESUMEN

Bacterial panicle blight (BPB) is one of the emerging diseases occurring in different Agro-Ecological Zones (AEZ) of Bangladesh and can cause up to 75% yield loss. In Bangladesh, the typical symptoms of BPB include sheath rot, panicle blight, grain spotting, and grain rot in both inbred and hybrid rice varieties, which resemble those reported by Zhou (2019). To confirm, 300 field samples of 20 panicles each with typical BPB symptoms from 20 districts (3 locations each district and 5 fields per location) were collected during mid-November 2022 for the causal pathogen(s) isolation. Nearly 70% of the panicles showed a dark brown chaffy appearance in the fields. For identification of the causal pathogen(s), 1 g of rice grains with typical BPB symptoms was surface sterilized by immersing for 15 seconds in 70% ethanol, 1 min in 3% sodium hypochlorite solution followed by rinsing the grains three times, and soaked in 1 mL sterile distilled water for 10 min (Mirghasempour et al. 2018). During grinding using mortar and pestle, 5 mL water was added (Islam et al. 2023) after which the suspension (20 µL) was then streaked onto the selective medium (S-PG) (Tsushima et al. 1986). Purple color colonies on the S-PG medium were selected and purified as candidate pathogens. For further confirmation, the genomic DNA of the bacterial isolates was extracted and amplified by PCR using 16SF (5'-AGAGTTTGATCCTGGCTCAG-3') and 16SR (5'-GGCTACCTTGTTACGACTT-3') (Nandakumar et al. 2009), and glu-FW (5'-GAAGTGTCGCCGATGGAG-3') and glu-RV (5'-CCTTCACCGACAGCACGCAT-3') primers (Maeda et al. 2006). The PCR products were visualized on 1% agarose gel resulting amplicons of 1494bp for 16S-rDNA and 529bp for gyrB. The PCR results revealed 529bp amplification for gyrB gene in one sample that was collected from a field in Natore (24°21'0.00" N 89°04'59.88" E) district cultivating Swarna (a local rice variety), primarily indicating the causal pathogen is Burkholderia glumae. The PCR products were sequenced using both primers and sequence data was analyzed by the BLAST nucleotide program. The obtained partial sequences of 16S rDNA and gyrB were deposited in Genbank (OR573691 and PP332812 respectively). The homology of 16S rDNA resulted over 98% with B. glumae (OK559611 and ON870618.1) and 100% with B. glumae (PP332812 and KX213523) for gyrB gene. To confirm B. glumae by pathogenicity test, 10 mL (108 UFC/ml) suspension of the representative strains, 0.5 mL was then injected into the panicles and sheaths of Horidhan (a susceptible local variety) in greenhouse condition and a control was inoculated with distilled water (Nandakumar et al. 2009). Typical BPB like symptoms were observed after 3 weeks post inoculation. The pathogen was again confirmed by reisolating from the infected spots as B. glumae to fulfill Koch's postulates. This report confirms the presence of B. glumae causing BPB of rice in Bangladesh. Future research for the investigation of BPB and the evolutionary origins of its causal bacteria is necessary to reduce the emergence of the disease and its management in Bangladesh.

2.
BMC Genom Data ; 25(1): 73, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075351

RESUMEN

OBJECTIVES: Rice (Oryza sativa) is the most important food for more than two thirds of the world's population. Bangladesh is the third largest producer and consumer of rice globally. Recently, several symptoms of Bacterial Panicle Blight (BPB) in rice, including seedling blight, sheath rot, floret sterility, and spotted grains, have been detected in the country. In addition, the presence of the most prevalent and virulent causative agent of BPB, Burkholderia glumae, has been confirmed in rice displaying symptoms of the disease. BPB could become one of the next emerging diseases of rice in Bangladesh, and a complete genome of a B. glumae strain from the country will help clarify its origin and devise proper management systems to continue sustainable rice production. DATA DESCRIPTION: We report the first complete genome sequence of a B. glumae strain (BD_21g) isolated from symptomatic rice grains in Bangladesh (Natore District). The genome contains 2 chromosomes (1 and 2, with 3,417,499 and 3,855,283 bp, respectively) and 4 plasmids (1-4, with 123,248, 46,628, 88,744 and 53,064 bp, respectively).


Asunto(s)
Burkholderia , Genoma Bacteriano , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/patogenicidad , Bangladesh , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Secuenciación Completa del Genoma
3.
Mol Biol Rep ; 51(1): 519, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625424

RESUMEN

BACKGROUND: Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS: Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS: Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.


Asunto(s)
Burkholderia , Oryza , Oryza/genética , Filogenia , ARN Ribosómico 16S/genética , Burkholderia/genética , Antioxidantes , Cobre , Grano Comestible
4.
Plant Pathol J ; 40(2): 106-114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606441

RESUMEN

Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.

5.
Plants (Basel) ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674547

RESUMEN

Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.

6.
Plant Dis ; 108(8): 2376-2388, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38386299

RESUMEN

Burkholderia glumae causes bacterial leaf blight in rice, and its global spread has been exacerbated by climate change. To understand the genetic diversity and virulence of B. glumae strains isolated from rice cultivars in Perú, 47 isolates were obtained from infected rice fields, all belonging to B. glumae, and confirmed by recA and toxB sequences. The BOX-PCR typing group has 38 genomic profiles, and these turn into seven variable number tandem repeats (VNTR) haplotypes. There was no correlation between clustering and geographical origin. Nineteen strains were selected for phenotypic characterization and virulence, using both the maceration level of the onion bulb proxy and inoculation of seeds of two rice cultivars. Several strains produced pigments other than toxoflavin, which correlated with onion bulb maceration. In terms of virulence at the seed level, all strains produced inhibition at the root and coleoptile level, but the severity of symptoms varied significantly between strains, revealing significant differences in pathogenicity. There is no correlation between maceration and virulence scores, probably reflecting different virulence mechanisms depending on the host infection stage. This is the first study to evaluate the VNTR diversity and virulence of Peruvian strains of B. glumae in two commercial cultivars.


Asunto(s)
Burkholderia , Variación Genética , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Burkholderia/genética , Burkholderia/patogenicidad , Burkholderia/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Virulencia/genética , Filogenia , Repeticiones de Minisatélite
7.
Plants (Basel) ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068569

RESUMEN

Rice (Oryzae sativa cv. dongjin) is a cornerstone of global food security; however, Burkholderia glumae BGR1, which is responsible for bacterial panicle blight (BPB), threatens its productive output, with dire consequences for rice and other crops. BPB is primarily caused by toxoflavin, a potent phytotoxin that disrupts plant growth at various developmental stages. Therefore, understanding the mechanisms through which toxoflavin and BPB affect rice plants is critical. Toxoflavin biosynthesis in B. glumae BGR1 relies on the toxABCDE operon, with ToxA playing a central role. In response to this threat, our study explores a metagenome-derived toxoflavin-degrading enzyme, TxeA, as a potential defense mechanism against toxoflavin's destructive impact. TxeA-induced degradation of toxoflavin represents a potential strategy to mitigate crop damage. We introduce a groundbreaking approach: engineering transgenic rice plants to produce toxoflavin-degrading enzymes. These genetically modified plants, armed with TxeA, hold significant potential for combating toxoflavin-related crop losses. However, removal of toxoflavin, a major virulence factor in B. glumae BGR1, does not completely inhibit virulence. This innovative perspective offers a new shift from pathogen eradication to leveraging transgenic plants' power, offering a beacon of hope for crop protection and disease management. Our study offers insights into the intricate interplay between toxoflavin, BPB, and TxeA, providing a promising avenue to safeguard rice crops, ensure food security, and potentially enhance the resilience of various agricultural crops to B. glumae BGR1-induced diseases.

8.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771643

RESUMEN

Bacterial panicle blight (BPB) and sheath blight (SB) are major diseases of rice and few cultivars have shown a high level of resistance to these diseases. A recombinant inbred line (RIL) population developed from the U.S. cultivars Jupiter (moderately resistant) and Trenasse (susceptible) was investigated to identify loci associated with the partial disease resistance to BPB and SB. Disease phenotypes in BPB and SB, as well as the days-to-heading (DTH) trait, were evaluated in the field. DTH was correlated to BPB and SB diseases, while BPB was positively correlated to SB in the field trials with this RIL population. Genotyping was performed using Kompetitive Allele Specific PCR (KASP) assays and whole-genome sequence (WGS) analyses. Quantitative trait locus (QTL) mapping and bulk segregant analysis using a set of WGS data (QTL-seq) detected a major QTL on the upper arm of chromosome 3 for BPB, SB, and DTH traits within the 1.0-1.9 Mb position. Additional QTLs associated with BPB and SB were also identified from other chromosomes by the QTL-seq analysis. The QTLs identified in this study contain at least nine candidate genes that are predicted to have biological functions in defense or flowering. These findings provide an insight into the complex nature of the quantitative resistance to BPB and SB, which may also be closely linked to the flowering trait.

9.
J Exp Bot ; 74(6): 2146-2159, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36648335

RESUMEN

The whitefly Bemisia tabaci is a piercing-sucking herbivore that reduces the yields of crops both by feeding on plants and transmitting plant viruses. Like most plant feeders, B. tabaci has evolved ways to avoid plant defence responses. For example, B. tabaci is known to secrete salivary effectors to suppress host defences. However, the nature of B. tabaci effectors is not completely understood. In this study, we used B. tabaci genomic and salivary gland transcriptomic data and an overexpression system to identify a previously unknown B. tabaci salivary effector, BtE3. BtE3 is specifically expressed in the head (containing primary salivary glands) and is secreted into hosts during B. tabaci feeding. In planta overexpression of BtE3 blocked Burkholderia glumae-induced hypersensitive response (HR) in both Nicotiana benthamiana and Solanum lycopersicum. Silencing of BtE3 by plant-mediated RNAi prevented B. tabaci from continuously ingesting phloem sap, and reduced B. tabaci survival and fecundity. Moreover, overexpression of BtE3 in planta up-regulated the salicylic acid- (SA-) signalling pathway, but suppressed the downstream jasmonic acid- (JA-) mediated defences. Taken together, these results indicate that BtE3 is a B. tabaci-specific novel effector involved in B. tabaci-plant interactions. These findings increase our understanding of B. tabaci effectors and suggest novel strategies for B. tabaci pest management.


Asunto(s)
Hemípteros , Solanum lycopersicum , Animales , Hemípteros/fisiología , Nicotiana/genética , Transducción de Señal , Solanum lycopersicum/genética , Productos Agrícolas
10.
Int J Food Microbiol ; 385: 110014, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399839

RESUMEN

Toxoflavin contamination was investigated in broken rice produced as a by-product of domestic rice processing complexes (RPCs) in 2011 in South Korea. Of the 68 RPCs investigated, toxoflavin contamination was confirmed in 12 from three provinces: Gangwon, Gyeonggi, and Gyeongsang. Isolation of toxoflavin-producing bacteria independent of toxoflavin contamination was also performed in this study. We obtained 25 toxoflavin-producing bacterial isolates from rice samples; these samples were collected from the same 12 RPCs mentioned above. All 25 toxoflavin-producing bacteria were identified as Burkholderia glumae by 16S rRNA gene sequencing. Toxoflavin-producing ability differed slightly among the 25 isolates, but they all inhibited rice seed germination and induced seed rot. This is the first report of toxoflavin contamination and the toxin-producing bacterium B. glumae in broken rice produced during the rice milling process. Because toxoflavin has stable physical properties even above a boiling temperature of 100°C, it can pose a problem even if rice is cooked or processed. These results will serve as baseline data aiding comprehensive management of toxoflavin contamination during the post-harvest storage and processing of rice.


Asunto(s)
Oryza , Oryza/microbiología , Percepción de Quorum , ARN Ribosómico 16S/genética , Pirimidinonas
11.
Pathogens ; 11(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36365016

RESUMEN

Burkholderia glumae is an important rice pathogen, thus the genomic and evolutionary history may be helpful to control this notorious pathogen. Here, we present two complete genomes of the B. glumae strains HN1 and HN2, which were isolated from diseased rice seed in China. Average nucleotide identity (ANI) analysis shows greater than 99% similarity of the strains HN1 and HN2 with other published B. glumae genomes. Genomic annotation revealed that the genome of strain HN1 consists of five replicons (6,680,415 bp) with an overall G + C content of 68.06%, whereas the genome of strain HN2 comprises of three replicons (6,560,085 bp) with an overall G + C content of 68.34%. The genome of HN1 contains 5434 protein-coding genes, 351 pseudogenes, and 1 CRISPR, whereas the genome of HN2 encodes 5278 protein-coding genes, 357 pseudogenes, and 2 CRISPR. Both strains encode many pathogenic-associated genes (143 genes in HN1 vs. 141 genes in HN2). Moreover, comparative genomic analysis shows the extreme plasticity of B. glumae, which may contribute to its pathogenicity. In total, 259 single-copy genes were affected by positive selection. These genes may contribute to the adaption to different environments. Notably, six genes were characterized as virulence factors which may be an additional way to assist the pathogenicity of B. glumae.

12.
J Biotechnol ; 359: 148-160, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36181924

RESUMEN

Streptomyces corchorusii TKR8, Streptomyces corchorusii JAS2 and Streptomyces misionensis TBS5 were previously obtained from rice fields and have been studied as a biocontrol agent against the causal agent of Bacterial Panicle Blight (BPB) disease on rice, Burkholderia glumae, and rice plant growth promoter. This study evaluated the potential of plant growth-promoting Streptomyces (PGPS) to control B. glumae and promote rice plants' growth under greenhouse conditions. PGPS were further characterized based on their phenotypic and biochemical differences. Multilocus sequence analysis (MLSA) by amplifying gyrB, rpoB and trpB using PCR was conducted to identify the PGPS further. The antimicrobial activity of PGPS against B. glumae was investigated using a survival assay and microscopic analysis. Result indicates that JAS2 (61.2 %) utilized the highest number of carbohydrates tested, followed by TKR8 (53.1 %) and TBS5 (40.8 %) as analyzed using API 50 CH. Based on MLSA analysis of the concatenated partial sequences (1520 bp) from three housekeeping genes, the neighbor-joining tree identified JAS2 and TKR8 as S. corchorusii. Meanwhile, TBS5 as S. misionensis. Antimicrobial activity of PGPS against B. glumae has found that the supernatant of Streptomyces reduced the survival viability of B. glumae up to 50.7-70.3 %. SEM images showed that substantial morphological changes happened in cell membranes of B. glumae after the Streptomyces treatment. The highest vigor index of inoculated seedlings was determined when rice seeds were treated with a spore suspension of 1 × 107 spore/mL (for JAS2 and TKR8) and 1 × 106 spore/mL (for TBS5). Under greenhouse conditions, Streptomyces-treated plants showed improvement in rice plants' growth and grain yield and reduced the BPB disease severity. Results suggest that the S. corchorusii TKR8, S. corchorusii JAS2 and S. misionensis TBS5 should be promoted as biocontrol agents against B. glumae and bioformulations for rice crops.


Asunto(s)
Antiinfecciosos , Burkholderia , Oryza , Streptomyces , Oryza/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Burkholderia/genética , Streptomyces/genética , Carbohidratos , Antiinfecciosos/metabolismo
13.
Front Microbiol ; 13: 950600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910611

RESUMEN

Bacteria often change their genetic and physiological traits to survive in harsh environments. To determine whether, in various strains of Burkholderia glumae, genomic diversity is associated with the ability to adapt to ever-changing environments, whole genomes of 44 isolates from different hosts and regions were analyzed. Whole-genome phylogenetic analysis of the 44 isolates revealed six clusters and two divisions. While all isolates possessed chromosomes 1 and 2, strains BGR80S and BGR81S had one chromosome resulting from the merging of the two chromosomes. Upon comparison of genomic structures to the prototype BGR1, inversions, deletions, and rearrangements were found within or between chromosomes 1 and/or 2 in the other isolates. When three isolates-BGR80S, BGR15S, and BGR21S, representing clusters III, IV, and VI, respectively-were grown in Luria-Bertani medium, spontaneous null mutations were identified in qsmR encoding a quorum-sensing master regulator. Six days after subculture, qsmR mutants were found at detectable frequencies in BGR15S and BGR21S, and reached approximately 40% at 8 days after subculture. However, the qsmR mutants appeared 2 days after subculture in BGR80S and dominated the population, reaching almost 80%. No qsmR mutant was detected at detectable frequency in BGR1 or BGR13S. The spontaneous qsmR mutants outcompeted their parental strains in the co-culture. Daily addition of glucose or casamino acids to the batch cultures of BGR80S delayed emergence of qsmR mutants and significantly reduced their incidence. These results indicate that spontaneous qsmR mutations are correlated with genomic structures and nutritional conditions.

14.
J Nanobiotechnology ; 20(1): 347, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883097

RESUMEN

BACKGROUND: The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS: Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS: In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.


Asunto(s)
Acil-Butirolactonas , Acil-Butirolactonas/metabolismo , Bacterias/metabolismo , Hidrolasas de Éster Carboxílico , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , Percepción de Quorum
15.
Mol Plant Pathol ; 23(10): 1461-1471, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717678

RESUMEN

Expression of type III secretion system (T3SS) genes, which are important for the virulence of phytopathogenic bacteria, is induced in the plant apoplastic environment or artificially amended growth conditions. Wild-type Burkholderia glumae BGR1, which causes rice panicle blight, induced a hypersensitive response (HR) in tobacco plants, whereas the T3SS genes were not significantly expressed in the commonly used hrp induction medium. T3SS gene expression in B. glumae was dependent on HrpB, a well known T3SS gene transcriptional regulator. Here, we report a stepwise mechanism of T3SS gene regulation by the GluR response regulator and Lon protease in addition to HrpB-mediated control of T3SS genes in B. glumae. The gluR mutant showed no HR in tobacco plants and exhibited attenuated virulence in rice plants. GluR directly activated hrpB expression, indicating that hrpB belongs to the GluR regulon. The lon mutation allowed high expression of the T3SS genes in nutrient-rich media. Lon directly activated gluR expression but repressed hrpB expression, indicating that Lon acts as a regulator rather than a protease. However, the lon mutant failed to induce an HR and virulence, suggesting that Lon not only acts as a negative regulator, but also has an essential, yet to be determined role for T3SS. Our results demonstrate the involvement of the two-component system response regulator GluR and Lon in T3SS gene regulation, providing new insight into the complex interplay mechanisms of regulators involved in T3SS gene expression in bacteria-plant interactions.


Asunto(s)
Burkholderia , Oryza , Proteasa La , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/metabolismo , Regulación Bacteriana de la Expresión Génica , Oryza/microbiología , Proteasa La/genética , Proteasa La/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
16.
Plants (Basel) ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684239

RESUMEN

Essential oils protect plants, and due to their natural origin, there is much interest in using them as antimicrobial agents. The purpose of this study was to determine the phytochemical constituents of ginger essential oil (GEO), antimicrobial activity, and mode of action against Burkholderia glumae (Bg). In addition, the volatile active compounds (AIs) were studied using GC-MS, FTIR, and Raman spectroscopy. A total of 45 phytochemical components were detected and the most prevalent bioactive compounds were Geranial, 1,8-Cineole, Neral, Camphene, α-Zingiberene, and α-Farnesene. Furthermore, it was found that the most dominant terpenes in GEO were monoterpenes. The diameter zone of inhibition values varied from 7.1 to 15 mm depending on the concentration tested. In addition, the MIC and MBC values were 112.5 µL/mL. Faster killing time and lower membrane potential were observed in 1xMIC treatment compared to 0.5xMIC treatment, whereas the control had the maximum values. From observations of various images, it was concluded that the mode of action of GEO affected the cytoplasmic membrane, causing it to lose its integrity and increase its permeability. Therefore, the antibacterial study and mechanism of action revealed that GEO is very effective in suppressing the growth of B. glumae.

17.
Life (Basel) ; 12(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35743824

RESUMEN

Seedling rot, caused by the bacterial pathogen Burkholderia glumae, is a major disease of rice. It originates from pathogen-contaminated seeds and is thus mainly controlled by pesticide treatments of seeds. We previously demonstrated that the seed-borne bacteria of rice may be a useful and sustainable alternative to pesticides to manage seedling rot, but they are limited in terms of variety. Here, we report that another seed-borne bacterium, Pantoea dispersa BB1, protects rice from B. glumae. We screened 72 bacterial isolates from rice seeds of three genetically different cultivars inoculated or non-inoculated with B. glumae. 16S rRNA gene sequencing revealed that pathogen inoculation affected the composition of culturable seed-borne bacterial communities and increased the presence of Pantoea and Paenibacillus species. Among three Pantoea and Paenibacillus isolates that exhibit tolerance to toxoflavin, a virulence factor of B. glumae, P. dispersa BB1 significantly mitigated the symptoms of rice seedling rot. The culture filtrate of BB1 inhibited the growth of B. glumae in vitro, suggesting that this isolate secretes antibacterial compounds. Seed treatment with BB1 suppressed pathogen propagation in plants, although seed treatment with the culture filtrate did not. Because BB1 did not show pathogenicity in rice, our findings demonstrate that BB1 is a promising biocontrol agent against seedling rot.

18.
Microorganisms ; 10(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744741

RESUMEN

Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international quarantine and effective control of the disease. Here, genomic analyses revealed that B. gladioli contains five phylogroups and the BG1 primer pair designed to target the 3'-end sequence of a gene encoding a Rhs family protein is specific to B. glumae and two phylogroups within B. gladioli. Using the BG1 primer pair, a 138-bp DNA fragment was amplified only from the tested panicle blight pathogens B. glumae and B. gladioli. An EvaGreen droplet digital PCR (dPCR) assay on detection and quantification of the two pathogens was developed from a SYBR Green real-time quantitative PCR (qPCR). The detection limits of the EvaGreen droplet dPCR on the two pathogens were identical at 2 × 103 colony forming units (CFU)∙mL-1 from bacterial suspensions and 2 × 102 CFU∙seed-1 from rice seeds. The EvaGreen droplet dPCR assay showed 10-fold detection sensitivity of the SYBR Green qPCR and could detect a single copy of the target gene in a 20-µL assay. Together, the SYBR Green qPCR assay allows for routine high-throughput detection of the panicle blight pathogens and the EvaGreen droplet dPCR assay provides a high-sensitive and high-accurate diagnostic method for quarantine of the pathogens.

19.
Pathogens ; 11(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745530

RESUMEN

Burkholderia glumae is one of the most critical rice-pathogenic bacteria, and it causes bacterial panicle blight (BPB) in rice plants. In 2017, BPB symptoms were observed from rice fields in Chiang Rai, Northern Thailand. Sixty-one isolates obtained from the symptomatic panicles of rice were initially identified as B. glumae by polymerase chain reaction (PCR) using species-specific primers. Among them, six selected strains isolated from the susceptible japonica rice cultivar DOA2 were characterized in terms of morpho-physiology, pathology, phylogenetics, and genomics. Our genome sequence analysis of the six selected strains revealed the presence of multiple prophages, which may reflect the high level of diversity in this bacterial species through dynamic horizontal gene transfer processes, including phage infection. This notion was supported by the results of phylogenetic and phylogenomic analyses, which showed the formation of several subgroups not related to the years of isolation or the geographical origins. This study reports the isolation of B. glumae as the causal pathogen of BPB disease in japonica rice in Thailand and provides genomic resources to better understand the biology and diversity of this plant pathogenic bacterium. Further studies with a vast collection of B. glumae strains from various rice-growing regions around the world are needed to elucidate the evolution, variability, and lifestyle of the pathogen.

20.
Front Microbiol ; 12: 755596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712216

RESUMEN

The rice pathogen Burkholderia glumae uses amino acids as a principal carbon source and thus produces ammonia in amino acid-rich culture medium such as Luria-Bertani (LB) broth. To counteract ammonia-mediated environmental alkaline toxicity, the bacterium produces a public good, oxalate, in a quorum sensing (QS)-dependent manner. QS mutants of B. glumae experience alkaline toxicity and may undergo cell death at the stationary phase when grown in LB medium. Here, we show that the cell-death processes of QS mutants due to alkaline environmental conditions are similar to the apoptosis-like cell death reported in other bacteria. Staining QS mutants with bis-(1,3-dibutylbarbituric acid)-trimethine oxonol revealed membrane depolarization. CellROX™ staining showed excessive generation of reactive oxygen species (ROS) in QS mutants. The expression of genes encoding HNH endonuclease (BGLU_1G15690), oligoribonuclease (BGLU_1G09120), ribonuclease E (BGLU_1G09400), and Hu-beta (BGLU_1G13530) was significantly elevated in QS mutants compared to that in wild-type BGR1, consistent with the degradation of cellular materials as observed under transmission electron microscopy (TEM). A homeostatic neutral pH was not attainable by QS mutants grown in LB broth or by wild-type BGR1 grown in an artificially amended alkaline environment. At an artificially adjusted alkaline pH, wild-type BGR1 underwent apoptosis-like cell death similar to that observed in QS mutants. These results show that environmental alkaline stress interferes with homeostatic neutral cellular pH, induces membrane depolarization, and causes apoptosis-like cell death in B. glumae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA