Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 19: 100601, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063248

RESUMEN

Membrane disruption using Bulk Electroporation (BEP) is a widely used non-viral method for delivering biomolecules into cells. Recently, its microfluidic counterpart, Localized Electroporation (LEP), has been successfully used for several applications ranging from reprogramming and engineering cells for therapeutic purposes to non-destructive sampling from live cells for temporal analysis. However, the side effects of these processes on gene expression, that can affect the physiology of sensitive stem cells are not well understood. Here, we use single cell RNA sequencing (scRNA-seq) to investigate the effects of BEP and LEP on murine neural stem cell (NSC) gene expression. Our results indicate that unlike BEP, LEP does not lead to extensive cell death or activation of cell stress response pathways that may affect their long-term physiology. Additionally, our demonstrations show that LEP is suitable for multi-day delivery protocols as it enables better preservation of cell viability and integrity as compared to BEP.

2.
ACS Nano ; 16(11): 19363-19372, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36350673

RESUMEN

Electroporation (EP) is an effective and widely accepted intracellular delivery method for fundamental research and medical applications. Existing electroporation methods usually require a commercially available EP system or tailor-made high-voltage (HV, up to kV) power source and are complicated, expensive, harmful to the cells, and even dangerous to the operators. A triboelectric nanogenerator (TENG) is a highly studied device that can generate HV output with limited charges and ultrahigh internal impedance. Here, we developed a Bulk Electroporation System based on TENG (BEST). To maximize the load voltage of the TENG, a flowing EP unit with a capillary was designed as a resistive load to realize impedance matching. A low conductivity buffer was used to further match and assist cell electroporation. Besides, the electrical model and experiments on cells transfected with the BEST showed that the bulk electric field of the cell medium could reach up to 1 kV/cm, therefore resulting in a nearly 30 times increase of trans-membrane potential, thus largely improving transfection efficiency. Finally, using 40 kDa FITC-dextran, we showed that a delivery efficiency above 50% with a cell viability maintained over 90% can be achieved in HeLa cells. This work demonstrated the potential of TENG in the biomedical field as a naturally safe HV power source. It also provided a simple, alternative, and low-cost solution for EP research and related biomedicine applications.


Asunto(s)
Suministros de Energía Eléctrica , Electroporación , Humanos , Células HeLa , Transfección , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA