Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(34): 46488-46503, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32648221

RESUMEN

The present research was devoted to water decontamination through the valorization of cellulosic fibers for the preparation of performing biosorbent, with high pollutant-uptake capacity and low cost. Luffa cylindrica (L.C) and zinc oxide were chosen for the synthesis of hybrid materials by precipitation with and without alternating current (AC). AC was used as a new alternative able to accelerate the reaction kinetics and to enhance the biosorption speed. The potential to remove phenol, from aqueous solution by coupling biosorption and AC, was highlighted. Pure L.C and hybrid materials (L.C + 4% Zn2+) synthesized with and without AC were chosen for the biosorption tests. The effects of pH, initial concentration, frequency, and contact time were studied. The efficiency of the coupling process was evaluated according to the quality of the treated water before and after purification. Results have shown that the percentages of chemical oxygen demand (COD), total organic carbon (TOC), germination indexes, and phenol removals have increased when adopting the coupling process. The maximal uptakes of phenol reached 15.4, 28.07, and 28.9 mg g-1 for a concentration of 30 mg L-1 of phenol, respectively, for raw L.C, L.C + 4% Zn2+ + AC, and L.C + 4% Zn2+ at pH = 2. Quantitative and qualitative characterizations confirmed the efficiency of the synthesized hybrid materials compared with pure L.C. The fractal model of Brouers Sotolongo was chosen for the description of the random distribution of the active sites. The kinetic and isotherm data showed a good correlation with the experimental results.


Asunto(s)
Fenol , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Agua , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Pollut Res Int ; 28(34): 46431-46447, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32535823

RESUMEN

The first aim of this study was to synthesize and characterize reed-based-beads (BBR), an enhanced adsorbent from Tunisian reed. The second purpose was to evaluate and optimize the BBR efficiency for the simultaneous removal of oxytetracycline (OTC) and cadmium (Cd(II)), using central composite design under response surface methodology. The third goal was to elucidate the biosorption mechanisms taking place. It was shown that under optimum conditions (4.19 g L-1 of BBR, 165.54 µmol L-1 of OTC, 362.16 µmol L-1 of Cd(II), pH of 6, and 25.14-h contact time) the highest adsorption percentages (63.66% for OTC and 99.99% for Cd(II)) were obtained. It was revealed that OTC adsorption mechanism was better described by Brouers-Sotolongo fractal equation, with regression coefficient (R2) of 0.99876, and a Person's chi-square (χ2) of 0.01132. The Weibull kinetic equation better explained Cd(II) biosorption (R2 = 0.99959 and χ2 = 0.00194). FTIR and isotherm studies confirmed that the BBR surface was heterogeneous, and that adsorption mechanisms were better described by the Freundlich/Jovanovich equation (R2 = 0.99276 and χ2 = 0.04864) for OTC adsorption, and by the Brouers-Sotolongo model (R2 = 0.9851 and χ2 = 0.77547) for Cd(II) biosorption. Overall results indicate that, at last, the BBR lignocellulosic biocomposite beads could be considered as cost-effective and efficient adsorbent, which could be of socioeconomic and environmental relevance. Graphical abstract.


Asunto(s)
Oxitetraciclina , Contaminantes Químicos del Agua , Adsorción , Cadmio , Humanos , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/análisis
3.
Int J Biol Macromol ; 154: 104-113, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135251

RESUMEN

Magnetic alginate/rice husk (m-ALG/RH) bio-composite beads prepared with ionotropic gelation method and used for methylene blue (MB) removal. Structural analysis of magnetic alginate/rice husk composite beads was performed using FTIR, SEM-EDS and TGA techniques. The accomplishment of magnetic alginate/rice husk composite beads as an adsorbent for the removal methylene blue was investigated from aqueous solution. Maximum experimental adsorption capacity of the bio-composite beads was calculated as 274.9 mg/g. The various process parameters such as pH, temperature and initial MB concentration optimized. It was determined that pH no significant effect on dye removal efficiency of beads while temperature and ionic strength caused a decrease on removal efficiency. The various isotherm models were applied for determine the adsorption mechanism and Freundlich isotherm model is more compatible with the experimental data. The kinetic studies showed that the adsorption of methylene blue can be well described by the fractal Brouers-Sotolongo kinetic model. The thermodynamic calculations indicated that methylene blue adsorption was a spontaneous and exothermic nature. The results showed that the magnetic alginate/rice husk bio-composite as low-cost and eco-friendly adsorbent can be effectively used for cationic dye removal steps in the environmental engineering applications.


Asunto(s)
Alginatos/química , Imanes/química , Azul de Metileno/química , Oryza/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Microesferas , Concentración Osmolar , Temperatura , Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
4.
J Hazard Mater ; 350: 162-168, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477884

RESUMEN

This study presents a detailed comparison of the two most popular fractal theories used in the field of kinetics sorption of pollutants in porous materials: the Brouers-Sotolongo model family of kinetics based on the BurrXII statistical distribution and the fractional kinetics based on the Riemann-Liouville fractional derivative theory. Using the experimental kinetics data of several studies published recently, it can be concluded that, although these two models both yield very similar results, the Brouers-Sotolongo model is easier to use due to its simpler formal expression and because it enjoys all the properties of a well-known family of distribution functions. We use the opportunity of this study to comment on the information, in particular, the sorption strength, the half-life time, and the time dependent rate, which can be drawn from a complete analysis of measured kinetics using a fractal model. This is of importance to characterize and classify sorbent-sorbate couples for practical applications. Finally, a generalization form of the Brouers-Sotolongo equation is presented by introducing a time dependent fractal exponent. This improvement, which has a physical meaning, is necessary in some cases to obtain a good fit of the experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA