Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269787

RESUMEN

Intercalation of several elements (Ag, Bi, In, Mo, Os, Pd, Pt, Rh, Ru, Sb, and W) is used to chemically alter a wide range of properties of two-dimensional layered α-MoO3. Intercalation modifies acoustic phonons and elastic constants, as measured with Brillouin scattering. Intercalation alters electronic bandgaps, color, structure, Raman shifts, and electron binding energies. Optical chemochromism is demonstrated with intercalants changing the color of MoO3 from transparent to brilliant blue (In, Mo, Os, and Ru) and orange (Ag). Correlations are investigated among material properties. There is evidence that in-plane longitudinal stiffness c11 correlates with changes in the bandgap, while various Raman modes appear to be connected to a variety of properties, including shear modulus c55, Mo binding energies, lattice constants, and the preferred crystal structure of the intercalant. The results indicate a surprising degree of complexity, suggesting competition among multiple distinct mechanisms and interactions involving specific intercalant species.

2.
JPhys Photonics ; 6(3): 032001, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38939757

RESUMEN

Stimulated Brillouin scattering (SBS) microscopy is a nonlinear all-optical imaging method that provides mechanical contrast based on the interaction of laser radiation and acoustical vibrational modes. Featuring high mechanical specificity and sensitivity, three-dimensional sectioning, and practical imaging times, SBS microscopy with (quasi) continuous wave excitation is rapidly advancing as a promising imaging tool for label-free visualization of viscoelastic information of materials and living biological systems. In this article, we introduce the theory of SBS microscopy and review the current state-of-the-art as well as recent innovations, including different approaches to system designs and data analysis. In particular, various performance parameters of SBS microscopy and its applications in the life sciences are described and discussed. Future perspectives for SBS microscopy are also presented.

3.
Nano Lett ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740527

RESUMEN

Nanoscale mechanical resonators have attracted a great deal of attention for signal processing, sensors, and quantum applications. Recent progress in ultrahigh-Q acoustic cavities in nanostructures allows strong interactions with various physical systems and advanced functional devices. Those acoustic cavities are highly sensitive to external perturbations, and it is hard to control those resonance properties since those responses are determined by the geometry and material. In this paper, we demonstrate a novel acoustic resonance tuning method by mixing high-order Lorentzian responses in an optomechanical system. Using weakly coupled phononic-crystal acoustic cavities, we achieve coherent mixing of second- and third-order Lorentzian responses, which is capable of the fine-tunability of the bandwidth and peak frequency of the resonance with a tuning range comparable to the acoustic dissipation rate of the device. This novel resonance tuning method can be widely applied to Lorentzian-response systems and optomechanics, especially active compensation for environmental fluctuation and fabrication errors.

4.
ACS Nano ; 18(20): 12845-12852, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712964

RESUMEN

Chemical tunability of the elastic constants of α-MoO3, a two-dimensional layered oxide, is demonstrated with mutability on the order of tens of GPa, simply by choice of a metal intercalant including Au, Cr, Fe, Ge, Mn, and Ni. Using Brillouin laser light scattering from confined acoustic phonons in nanometer-thick materials, the in-plane angular dispersion of the quantized acoustic phonon branches of 2D layered, intercalated MoO3 is measured and used to determine the bulk modulus (K), Young's moduli (E11, E22, and E33), each of the nine independent elastic tensor elements (cij), and the thickness. Intercalation of metals generally reduces the anisotropy in MoO3 except in Ge-MoO3, for which the in-plane longitudinal elastic anisotropy is unaffected. Chemochromism from transparent white (MoO3 and Fe-MoO3) to near black (Ni-MoO3) to brilliant dark blue (Ge-MoO3) is demonstrated and is associated with a reduction in electronic band gap with intercalation and an increase in absorption >600 nm for some intercalants (Cr-, Ge-, and Mn-MoO3).

5.
Photonix ; 5(1): 9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618142

RESUMEN

Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.

6.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676034

RESUMEN

A time-differential (TD) Brillouin optical correlation domain analysis (BOCDA) sensor system was applied to measure the Brillouin gain spectrum of a 1 km long sensing optical fiber. The optical delay line used in all BOCDA measurement systems was eliminated in the TD-BOCDA system by using a bit-delayed modulation relationship between the probe and pump lightwaves. These lightwaves were phase modulated using 216-1 pseudo-random binary sequence codes at 5 Gbps. A 2 cm dispersion-shifted fiber placed at the end of the 1 km optical fiber was distinctly identified by the Brillouin frequency extracted from the Brillouin gain spectrum measurement. To investigate the measurement stability of the TD-BOCDA system, experiments were conducted under two different pumping conditions. A semiconductor optical amplifier (SOA) and an intensity modulator (MOD) were compared for the pump chopper used in the TD-BOCDA system to detect the extinction ratio of the pump and the resulting noise in the Brillouin gain measurement. The stability of the Brillouin frequency measurement from the Brillouin gain spectrum in the TD-BOCDA system was investigated by increasing the average value of the measurement using either the SOA or MOD. The repeated-measurement deviation of the system with the SOA was only half of the deviation observed in the system with the MOD. The performance of TD-BOCDA is equivalent to or better than that of conventional BOCDAs in terms of measurement reliability. Moreover, TD-BOCDA is free from the drawbacks of traditional BOCDA, which uses time-delayed fibers and varies the bit rates.

7.
Materials (Basel) ; 17(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255468

RESUMEN

Poisson's ratio is the fundamental metric used to discuss the performance of any material when strained elastically. However, the methods of the determination of Poisson's ratio are not yet discussed well. The first purpose of this paper is to introduce the five kinds of typical experimental methods to measure Poisson's ratio of glasses, ceramics, and crystals. The second purpose is to discuss the experimental results on the variation of Poisson's ratio by composition, temperature, and pressure reviewed for various glasses, ceramics, and crystals, which are not yet reviewed. For example, in oxide glasses, the number of bridging oxygen atoms per glass-forming cation provides a straightforward estimation of network crosslinking using Poisson's ratio. In the structural-phase transition of crystals, Poisson's ratio shows remarkable temperature-dependence in the vicinity of a phase-transition temperature. The mechanism of these variations is discussed from physical and chemical points of view. The first-principles calculation of Poisson's ratio in the newly hypothesized compounds is also described, and its pressure-induced ductile-brittle transition is discussed.

8.
Photoacoustics ; 33: 100563, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37953941

RESUMEN

A theory has been developed to interpret time-domain Brillouin scattering (TDBS) experiments involving coherent acoustic pulse (CAP) and light pulse beams propagating at an angle to each other. It predicts the influence of the directivity pattern of their acousto-optic interaction on TDBS signals when heterodyne detection of acoustically scattered light is in backward direction to incident light. The theory reveals relationships between the carrier frequency, amplitude and duration of acoustically induced "wave packets" in light transient reflectivity signals, and factors such as CAP duration, widths of light and sound beams, and their interaction angle. It describes the transient dynamics of these wave packets when the light and CAP encounter material interfaces, and how the light scattering by the incident CAP transforms into scattering by the reflected and transmitted CAPs. The theory suggests that single-point TDBS experiments can determine not only depth positions of buried interfaces but also their local inclinations/orientations.

9.
Photoacoustics ; 34: 100567, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38027528

RESUMEN

By means of an ultrafast optical technique, picosecond acoustic strain pulses in a transparent medium are tomographically visualized at GHz frequencies. The strain distribution in BK7 glass is reconstructed from time-domain reflectivity changes of 415-nm probe light as a function of the optical incidence angle with 1 ps temporal and 120 nm spatial resolutions, enabled by automated angle scanning. The latter resolution is achieved owing to the commensurate acoustic wavelength. Applications include imaging strain, carrier and temperature distributions on ultrashort timescales.

10.
Photoacoustics ; 33: 100547, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021283

RESUMEN

Time-domain Brillouin scattering (TDBS) is a developing technique for imaging/evaluation of materials, currently used in material science and biology. Three-dimensional imaging and characterization of polycrystalline materials has been recently reported, demonstrating evaluation of inclined material boundaries. Here, the TDBS technique is applied to monitor the destruction of a lithium niobate single crystal upon non-hydrostatic compression in a diamond anvil cell. The 3D TDBS experiments reveal, among others, modifications of the single crystal plate with initially plane-parallel surfaces, caused by non-hydrostatic compression, the laterally inhomogeneous variations of the plate thickness and relative inclination of opposite surfaces. Our experimental observations, supported by theoretical interpretation, indicate that TDBS enables the evaluation of materials interface orientation/inclination locally, from single point measurements, avoiding interface profilometry. A variety of observations reported in this paper paves the way to further expansion of the TDBS imaging use to analyze fascinating processes/phenomena occurring when materials are subjected to destruction.

11.
Micromachines (Basel) ; 14(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893364

RESUMEN

Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presence or absence of sufficient PM light. This requirement is met by combining dual temperature-sensitive fiber Bragg gratings detection with high-speed RF amplitude comparisons. The failsafe trigger signal is generated when the spectral power at the peak sideband exceeds that at the center. The spectral failsafe system has the ability to distinguish between adequate and inadequate PM pulses, and it exhibits significant robustness in pulse width, TEC temperature drift, and DFB wavelength drift in experiments, making it valuable for safe high-power laser operations and providing a useful reference for other detection system designs.

12.
Sensors (Basel) ; 23(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836997

RESUMEN

Brillouin optical time domain reflectometry (BOTDR) detects fiber temperature and strain data and represents one of the most critical ways of identifying abnormal conditions such as ice coverage and lightning strikes on optical fiber composite overhead ground wire (OPGW) cable. Existing BOTDR extracts brillouin frequency shift (BFS) features with cumulative averaging and curve fitting. BFS feature extraction is slow for long-distance measurements, making realizing real-time measurements on fiber optic cables challenging. We propose a fast feature extraction method for block matching and 3D filtering (BM3D) + Sobel brillouin scattering spectroscopy (BGS). BM3D takes the advantage of non-local means (NLM) and wavelet denoising (WD) and utilizes the spatial-domain non-local principle to enhance the denoising in the transform domain. The global filtering capability of BM3D is utilized to filter out the low cumulative average BGS noise and the BFS feature extraction is completed using Sobel edge detection. Simulation verifies the feasibility of the algorithm, and the proposed method is embedded in BOTDR to measure 30 km of actual OPGW line. The experimental results show that under the same conditions, the processing time of this method is reduced by 37 times compared to that with the 50,000-time cumulative averaging + levenberg marquardt (LM) algorithm without severe distortion of the reference resolution. The method improves the sensor demodulation speed by using image processing technology without changing the existing hardware equipment, which is expected to be widely used in the new generation of BOTDR.

13.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631654

RESUMEN

Distributed optical fiber sensors (DOFSs) are a promising technology for their unique advantage of long-distance distributed measurements in industrial applications. In recent years, modern industrial monitoring has called for comprehensive multi-parameter measurements to accurately identify fault events. The hybrid DOFS technology, which combines the Rayleigh, Brillouin, and Raman scattering mechanisms and integrates multiple DOFS systems in a single configuration, has attracted growing attention and has been developed rapidly. Compared to a single DOFS system, the multi-parameter measurements based on hybrid DOFS offer multidimensional valuable information to prevent misjudgments and false alarms. The highly integrated sensing structure enables more efficient and cost-effective monitoring in engineering. This review highlights the latest progress of the hybrid DOFS technology for multi-parameter measurements. The basic principles of the light-scattering-based DOFSs are initially introduced, and then the methods and sensing performances of various techniques are successively described. The challenges and prospects of the hybrid DOFS technology are discussed in the end, aiming to pave the way for a vaster range of applications.

14.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448034

RESUMEN

This paper presents reported machine learning approaches in the field of Brillouin distributed fiber optic sensors (DFOSs). The increasing popularity of Brillouin DFOSs stems from their capability to continuously monitor temperature and strain along kilometer-long optical fibers, rendering them attractive for industrial applications, such as the structural health monitoring of large civil infrastructures and pipelines. In recent years, machine learning has been integrated into the Brillouin DFOS signal processing, resulting in fast and enhanced temperature, strain, and humidity measurements without increasing the system's cost. Machine learning has also contributed to enhanced spatial resolution in Brillouin optical time domain analysis (BOTDA) systems and shorter measurement times in Brillouin optical frequency domain analysis (BOFDA) systems. This paper provides an overview of the applied machine learning methodologies in Brillouin DFOSs, as well as future perspectives in this area.


Asunto(s)
Tecnología de Fibra Óptica , Dispositivos Ópticos , Fibras Ópticas , Humedad , Aprendizaje Automático
15.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420569

RESUMEN

In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.


Asunto(s)
Fertilización , Frecuencia Cardíaca , Funciones de Verosimilitud
16.
Front Phys ; 112023.
Artículo en Inglés | MEDLINE | ID: mdl-37377499

RESUMEN

Brillouin microscopy based on spontaneous Brillouin scattering has emerged as a unique elastography technique because of its merit of non-contact, label-free, and high-resolution mechanical imaging of biological cell and tissue. Recently, several new optical modalities based on stimulated Brillouin scattering have been developed for biomechanical research. As the scattering efficiency of the stimulated process is much higher than its counterpart in the spontaneous process, stimulated Brillouin-based methods have the potential to significantly improve the speed and spectral resolution of existing Brillouin microscopy. Here, we review the ongoing technological advancements of three methods, including continuous wave stimulated Brillouin microscopy, impulsive stimulated Brillouin microscopy, and laser-induced picosecond ultrasonics. We describe the physical principle, the representative instrumentation, and biological application of each method. We further discuss the current limitations as well as the challenges for translating these methods into a visible biomedical instrument for biophysics and mechanobiology.

17.
Photoacoustics ; 31: 100493, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37180958

RESUMEN

In this paper, we show a proof-of-concept method to parallelise phonon microscopy measurements for cell elasticity imaging by demonstrating a 3-fold increase in acquisition speed which is limited by current acquisition hardware. Phonon microscopy is based on time-resolved Brillouin scattering, which uses a pump-probe method with asynchronous optical sampling (ASOPS) to generate and detect coherent phonons. This enables access to the cell elasticity via the Brillouin frequency with sub-optical axial resolution. Although systems based on ASOPS are typically faster compared to the ones built with a mechanical delay line, they are still very slow to study real time changes at the cellular level. Additionally, the biocompatibility is reduced due to long light exposure and scanning time. Using a multi-core fibre bundle rather than a single channel for detection, we acquire 6 channels simultaneously allowing us to speed-up measurements, and open a way to scale-up this method.

18.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37177189

RESUMEN

The presence of certain proteins in biofluids such as synovial fluid, blood plasma, and saliva gives these fluids non-Newtonian viscoelastic properties. The amount of these protein macromolecules in biofluids is an important biomarker for the diagnosis of various health conditions, including Alzheimer's disease, cardiovascular disorders, and joint quality. However, existing technologies for measuring the behavior of macromolecules in biofluids have limitations, such as long turnaround times, complex protocols, and insufficient sensitivity. To address these issues, we propose non-contact, optical Brillouin and Raman spectroscopy to assess the viscoelasticity and chemistry of non-Newtonian solutions, respectively, at different temperatures in several minutes. In this work, bovine and human serum albumin solution-based biopolymers were studied to obtain both their collective dynamics and molecular chemical evolution across heat-driven phase transitions at various protein concentrations. The observed phase transitions at elevated temperatures could be fully delayed in heated biopolymers by appropriately raising the level of protein concentration. The non-contact optical monitoring of viscoelastic and chemical property evolution could represent novel potential mechano-chemical biomarkers for disease diagnosis and subsequent treatment applications, including hyperthermia.

19.
Photoacoustics ; 31: 100486, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37113270

RESUMEN

We present a picosecond optoacoustic technique for mapping both the longitudinal sound velocity v and the refractive index n in solids by automated measurement at multiple probe incidence angles in time-domain Brillouin scattering. Using a fused silica sample with a deposited titanium film as an optoacoustic transducer, we map v and n in the depth direction. Applications include the imaging of sound velocity and refractive index distributions in three dimensions in inhomogeneous samples such as biological cells.

20.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984380

RESUMEN

Uniaxial ferroelectrics with tetragonal tungsten bronze structure are important functional materials with photorefractive, electrooptic, piezoelectric, and pyroelectric properties. SrxBa1-xNb2O6 (SBN100x) with x > 50 is known as a typical uniaxial relaxor ferroelectric, while CaxBa1-xNb2O6 (CBN100x) undergoes nearly normal ferroelectric phase transitions. Single crystals of CSBN100x = [x(CBN28) + (1 - x) (SBN61)] = xCa0.28Ba0.72Nb2O6 + (1 - x) Sr0.61Ba0.39Nb2O6 with nominal x = 0.00, 0.25, 0.50, 0.75, and 1.00 were studied to clarify the dynamical properties at the crossover from relaxor (x = 0) to normal (x = 1) ferroelectric behavior. The longitudinal acoustic (LA) and transverse acoustic (TA) modes and a central peak (CP) related to the relaxation process of polarization fluctuations along the polar c-axis were studied in uniaxial ferroelectric CSBN single crystals as a function of temperature via Brillouin scattering spectroscopy. A CBN28 (x = 1.00) crystal shows the sharp elastic anomaly of the LA mode in the gigahertz range toward Curie temperature, Tc. However, those of CSBN25 (x = 0.25) and SBN61 (x = 0.00) crystals show diffusive anomalies due to stronger random fields. The relaxation time determined from the width of a CP shows a critical slowing down in the vicinity of Tc. The elastic anomaly and slowing down of relaxation time of CSBN100x crystals become diffusive in the vicinity of Tc as the CBN28 content decreases. The origin of the crossover from relaxor to normal ferroelectric phase transitions is discussed in terms of the difference in the A1 and A2 sites' occupancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA