Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921848

RESUMEN

Signal-dependent speckle-like noise has constituted a serious factor in Brillouin-grating based frequency-modulated continuous-wave (FMCW) reflectometry and it has been indispensable for improving the signal-to-noise ratio (S/N) of the Brillouin dynamic grating measurement to clarify the noise generation mechanism. In this paper we show theoretically and experimentally that the noise is generated by the frequency fluctuations of the pump light from a laser diode (LD). We could increase the S/N from 36 to 190 merely by driving the LD using a current source with reduced technical noise. On the basis of our experimental result, we derived the theoretical formula for S/N as a function of distance, which contained the second and fourth-order moments of the frequency fluctuations, by assuming that the pump light frequency was modulated by the technical noise. We calculated S/N along the 1.35 m long optical fiber numerically using the measured power spectral density of the frequency fluctuations, and the resulting distributions agreed with the measured values in the 10 to 190 range. Since higher performance levels are required if the pump light source is to maintain the S/N as the fiber length increases, we can use the formula to calculate the light source specifications including the spectral width and rms value of the frequency fluctuations to achieve a high S/N while testing a fiber of a given length.

2.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050649

RESUMEN

Signal-dependent speckle-like noise was the dominant noise in a Brillouin grating measurement with micrometer-resolution optical low coherence reflectometry (OLCR). The noise was produced by the interaction of a Stokes signal with beat noise caused by a leaked pump light via square-law detection. The resultant signal-to-noise ratio (SNR) was calculated and found to be proportional to the square root of the dynamic range (DR) defined by the ratio of the Stokes signal magnitude to the variance of the beat noise. The calculation showed that even when we achieved a DR of 20 dB on a logarithmic scale, the SNR value was only 7 on a linear scale and the detected signal tended to fluctuate over ±14% with respect to the mean level. We achieved an SNR of 24 by attenuating the pump light power entering the balanced mixer by 55 dB, and this success enabled us to measure the Brillouin spectrum distributions of mated fiber connectors and a 3-dB fused fiber coupler with a micrometer resolution as examples of OLCR diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA