RESUMEN
Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.
Asunto(s)
Encéfalo , Disfunción Cognitiva , Dieta Alta en Grasa , Suplementos Dietéticos , Estrés Oxidativo , Zingiber officinale , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéuticoRESUMEN
BACKGROUND: Neuropsychiatric sequelae of COVID-19 have been widely documented in patients with severe neurological symptoms during the chronic or subacute phase of the disease. However, it remains unclear whether subclinical changes in brain metabolism can occur early in the acute phase of the disease. The aim of this study was to identify and quantify changes in brain metabolism in patients hospitalized for acute respiratory syndrome due to COVID-19 with no or mild neurological symptoms. RESULTS: Twenty-three non-intubated patients (13 women; mean age 55.5 ± 12.1 years) hospitalized with positive nasopharyngeal swab test (RT-PCR) for COVID-19, requiring supplemental oxygen and no or mild neurological symptoms were studied. Serum C-reactive protein measured at admission ranged from 6.43 to 189.0 mg/L (mean: 96.9 ± 54.2 mg/L). The mean supplemental oxygen demand was 2.9 ± 1.4 L/min. [18F]FDG PET/CT images were acquired with a median of 12 (4-20) days of symptoms. After visual interpretation of the images, semiquantitative analysis of [18F]FDG uptake in multiple brain regions was evaluated using dedicated software and the standard deviation (SD) of brain uptake in each region was automatically calculated in comparison with reference values of a normal database. Evolutionarily ancient structures showed positive SD mean values of [18F]FDG uptake. Lenticular nuclei were bilaterally hypermetabolic (> 2 SD) in 21/23 (91.3%) patients, and thalamus in 16/23 (69.6%), bilaterally in 11/23 (47.8%). About half of patients showed hypermetabolism in brainstems, 40% in hippocampi, and 30% in cerebellums. In contrast, neocortical regions (frontal, parietal, temporal and occipital lobes) presented negative SD mean values of [18F]FDG uptake and hypometabolism (< 2 SD) was observed in up to a third of patients. Associations were found between hypoxia, inflammation, coagulation markers, and [18F]FDG uptake in various brain structures. CONCLUSIONS: Brain metabolism is clearly affected during the acute phase of COVID-19 respiratory syndrome in neurologically asymptomatic or oligosymptomatic patients. The most frequent finding is marked hypermetabolism in evolutionary ancient structures such as lenticular nucleus and thalami. Neocortical metabolism was reduced in up to one third of patients, suggesting a redistribution of brain metabolism from the neocortex to evolutionary ancient brain structures in these patients.
RESUMEN
The aggressivity is modulated in honeybee brain through a series of actions in cascade mode, with the participation of the neuropeptides AmAST A (59-76) and AmTRP (254-262). The aggressivity of honeybees was stimulated by injecting both neuropeptides in the hemocoel of the worker honeybees, which were submitted to behavioral assays of aggression. The brain of stinger individuals were removed by dissection and submitted to proteomic analysis; shotgun proteomic approach of honeybee brain revealed that both neuropeptides activate a series of biochemical processes responsible by production of energy, neuronal plasticity and cell protection. In addition to this, AmTRP (254-262) elicited the expression of proteins related to the processing of the potential of action and lipid metabolism; meanwhile AmAST A (59-76) elicited the metabolism of steroids and Juvenile hormone-related metabolism, amongst others. Apparently, the most complex biochemical process seems to be the regulation of ATP production, which occurs at two levels: i) by a subgroup of proteins common to the three experimental groups, which are over-/under-regulated through glycolysis, pyruvate pathway, Krebbs cycle and oxidative phosphorylation; ii) by a subgroup of proteins unique to the each experimental group, which seems to be regulated through Protein-Protein Interactions, where the protein network regulated by AmTRP (254-262) seems to be more complex than the other two experimental groups. SIGNIFICANCE: Recently we reported the effect of the neuropeptides AmAST A (59-76) and AmTRP (254-262) in the modulation of the aggressive behavior of the worker honeybees. Up to now it is known that the simple presence of the allatostatin and tachykinin-related-peptide in bee brain, is enough for inducing the aggressive behavior. However, nothing was known about how these neuropeptides perform their action, inducing the aggressive behavior. The results of the present study elucidated some of the metabolic pathways that were activated or inhibited to support the complex defensive behavior, which includes the aggressivity. These results certainly will impact the behavioral research of honeybees, since we are paving the way for understanding the molecular base of regulation, of individual /nest defense of honeybees.
Asunto(s)
Neuropéptidos , Proteómica , Abejas , Animales , Humanos , Encéfalo/metabolismoRESUMEN
BACKGROUND: Glycolytic metabolism in the brain of pediatric patients, imaged with [18F] fluorodeoxyglucose-positron emission tomography (FDG-PET) is incompletely characterized. OBJECTIVE: The purpose of the current study was to characterize [18F]FDG-PET brain uptake in a large sample of pediatric patients with non-central nervous system diseases as an alternative to healthy subjects to evaluate changes at different pediatric ages. MATERIALS AND METHODS: Seven hundred ninety-five [18F]FDG-PET examinations from children < 18 years of age without central nervous system diseases were included. Each brain image was spatially normalized, and the standardized uptake value (SUV) was obtained. The SUV and the SUV relative to different pseudo-references were explored as a function of age. RESULTS: At all evaluated ages, the occipital lobe showed the highest [18F]FDG uptake (0.27 ± 0.04 SUV/year), while the parietal lobe and brainstem had the lowest uptake (0.17 ± 0.02 SUV/year, for both regions). An increase [18F]FDG uptake was found for all brain regions until 12 years old, while no significant uptake differences were found between ages 13 (SUV = 5.39) to 17 years old (SUV = 5.52) (P < 0.0001 for the whole brain). A sex dependence was found in the SUVmean for the whole brain during adolescence (SUV 5.04-5.25 for males, 5.68-5.74 for females, P = 0.0264). Asymmetries in [18F]FDG uptake were found in the temporal and central regions during infancy. CONCLUSIONS: Brain glycolytic metabolism of [18F]FDG, measured through the SUVmean, increased with age until early adolescence (< 13 years old), showing differences across brain regions. Age, sex, and brain region influence [18F]FDG uptake, with significant hemispheric asymmetries for temporal and central regions.
Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Masculino , Femenino , Adolescente , Humanos , Niño , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Voluntarios Sanos , RadiofármacosRESUMEN
Intracellular Ca2+ concentrations are strictly controlled by plasma membrane transporters, the endoplasmic reticulum, and mitochondria, in which Ca2+ uptake is mediated by the mitochondrial calcium uniporter complex (MCUc), while efflux occurs mainly through the mitochondrial Na+ /Ca2+ exchanger (NCLX). RNAseq database repository searches led us to identify the Nclx transcript as highly enriched in astrocytes when compared with neurons. To assess the role of NCLX in mouse primary culture astrocytes, we inhibited its function both pharmacologically or genetically. This resulted in re-shaping of cytosolic Ca2+ signaling and a metabolic shift that increased glycolytic flux and lactate secretion in a Ca2+ -dependent manner. Interestingly, in vivo genetic deletion of NCLX in hippocampal astrocytes improved cognitive performance in behavioral tasks, whereas hippocampal neuron-specific deletion of NCLX impaired cognitive performance. These results unveil a role for NCLX as a novel modulator of astrocytic glucose metabolism, impacting on cognition.
Asunto(s)
Astrocitos , Calcio , Ratones , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Mitocondrias/metabolismo , Glucólisis , Cognición , Sodio/metabolismo , Señalización del Calcio/fisiologíaRESUMEN
Late onset Alzheimer´s disease (AD) is a neurodegenerative disease with gender differences in its onset and progression, being the prevalence predominant in women and at an earlier age than in men. The pathophysiology of the menopausal condition has been associated to this dementia, playing major roles regarding both endocrine and glucose metabolism changes, amongst other mechanisms. In the current review we address the role of estrogen deficiency in the processes involved in the development of AD, including amyloid precursor protein (APP) processing to form senile plaques, Tau phosphorylation forming neurofibrillary tangles, Wnt signaling and AD neuropathology, the role of glucose brain metabolism, Wnt signaling and glucose transport in the brain, and our research contribution to these topics.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau , Enfermedades Neurodegenerativas/metabolismo , Vía de Señalización Wnt , Menopausia , GlucosaRESUMEN
Mitochondrial function is essential to ensure vital cellular processes. Given the energy requirement of the brain, neuronal function, viability, and survival are closely related to proper mitochondrial function. Dysregulation of mitochondrial processes can lead to several detrimental effects in the cells and stablish the condition of mitochondrial dysfunction. This dysfunction is proposed to be greatly implicated in several neurodegenerative diseases, with evidence of compromised mitochondrial function and dynamics in Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Mitocondrias , NeuronasRESUMEN
Neonatal hypoxia-ischemia (HI) is among the main causes of mortality and morbidity in newborns. Experimental studies show that the immature rat brain is less susceptible to HI injury, suggesting that changes that occur during the first days of life drastically alter its susceptibility. Among the main developmental changes observed is the mitochondrial function, namely, the tricarboxylic acid (TCA) cycle and respiratory complex (RC) activities. Therefore, in the present study, we investigated the influence of neonatal HI on mitochondrial functions, redox homeostasis, and cell damage at different postnatal ages in the hippocampus of neonate rats. For this purpose, animals were divided into four groups: sham postnatal day 3 (ShP3), HIP3, ShP11, and HIP11. We initially observed increased apoptosis in the HIP11 group only, indicating a higher susceptibility of these animals to brain injury. Mitochondrial damage, as determined by flow cytometry showing mitochondrial swelling and loss of mitochondrial membrane potential, was also demonstrated only in the HIP11 group. This was consistent with the decreased mitochondrial oxygen consumption, reduced TCA cycle enzymes, and RC activities and induction of oxidative stress in this group of animals. Considering that HIP3 and the sham animals showed no alteration of mitochondrial functions, redox homeostasis, and showed no apoptosis, our data suggest an age-dependent vulnerability of the hippocampus to hypoxia-ischemia. The present results highlight age-dependent metabolic differences in the brain of neonate rats submitted to HI indicating that different treatments might be needed for HI newborns with different gestational ages.
Asunto(s)
Apoptosis/fisiología , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis/fisiología , Oxidación-Reducción , Consumo de Oxígeno/fisiología , Ratas , Ratas WistarRESUMEN
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Asunto(s)
Encéfalo/metabolismo , Ambiente , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/prevención & control , Plasticidad Neuronal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Femenino , Hipoxia-Isquemia Encefálica/psicología , Lactancia/metabolismo , Lactancia/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/psicología , Tomografía de Emisión de Positrones/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas WistarRESUMEN
The inflammatory process plays a critical role in the development of neurodegenerative diseases. Insulin is used in preclinical and clinical studies of neurological disorders. Its intranasal (IN) administration directly in the brain allows for its peripheral metabolic effects to be avoided. Swiss male mice were injected with lipopolysaccharide (LPS) (0.1â¯mg/kg) to induce low-grade inflammation. IN insulin treatment was initiated 4â¯h later at a dose of 1.7 IU once daily for 5 days. LPS induced cognitive deficits, which the IN insulin treatment reversed. LPS significantly decreased, whereas IN insulin significantly increased the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor-ß in the cortex. In the hippocampus, IN insulin significantly decreased the BDNF level. LPS significantly increased the interleukin (IL)-6 levels in the cortex, while IN Insulin significantly decreased its levels in the hippocampus. The tumor necrosis factor-α levels were significantly decreased by IN insulin both in the cortex and hippocampus. Moreover, IN insulin significantly increased the IL-10 levels in the cortex. The levels of oxidative and nitrosative stress were significantly higher in the LPS-treated mice; however, IN insulin had a modulatory effect on both. LPS significantly increased the antioxidant enzyme activity both in the cortex and hippocampus, whereas IN insulin significantly increased the activity of both superoxide dismutase and catalase in the hippocampus and that of catalase in the cortex. The hydrogen peroxide levels revealed that LPS significantly affected the electron transport chain. Therefore, IN insulin could be useful in the treatment of neuroinflammatory diseases.
Asunto(s)
Encefalopatías/tratamiento farmacológico , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Insulina/farmacología , Administración Intranasal , Animales , Encefalopatías/inducido químicamente , Encefalopatías/metabolismo , Encefalopatías/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/patología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Factor de Crecimiento Nervioso/metabolismoRESUMEN
In the central nervous system, glial cells protect the brain against neuronal stress by inducing inflammatory responses; namely, intracellular signaling and cytokine production. However, chronic inflammation is often associated with degenerative diseases that can damage hormone signaling and mitochondrial function. Lipopolysaccharide (LPS) induces neuroinflammation by stimulating the production of interleukin-1beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α); moreover, it generates oxidative stress and impairs cognitive functions. The aim of the present study was to assess the therapeutic efficacy of intracerebroventricular (i.c.v.) injections of insulin against neuroinflammation. Inflammation was first induced in male Wistar rats (60 days old, n = 12/group) through an intraperitoneal injection of 0.1 mg/kg LPS. The i.c.v. insulin treatment at a 0.5 mU dose was initiated 4 h later and administered once a day for 5 days. Thereafter, the spatial memory of the rats was assessed, and the hippocampus and cortex were later dissected for biochemical analyses. Our results showed that LPS induced cognitive function impairments, but the insulin treatment reversed these effects. Whereas the levels of brain-derived neurotrophic factor and beta-nerve growth factor in the hippocampus were not altered by LPS, they were decreased in the cortex by insulin. The IL-1ß and TNF-α levels were increased in the cortex and hippocampus following exposure to LPS, but insulin reversed these effects. Evaluation of the H2O2levels and mitochondrial membrane potential revealed that LPS modulated mitochondrial function, an effect that was also reversed by insulin. Moreover, LPS induced oxidative stress by decreasing the superoxide dismutase and catalase activities and glutathione and sulfhydryl levels. Furthermore, the levels of oxidative stress probes/markers (i.e.,2',7'-dichlorodihydrofluoresceindiacetateand nitrite) were higher in the LPS-treated rats. These effects were all reversed in the cortex and hippocampus by insulin treatment. Our results suggest a potential role for insulin as a therapeutic drug against inflammatory diseases associated with mitochondrial dysfunction in the brain.
Asunto(s)
Insulina/farmacología , Mitocondrias/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Citocinas/metabolismo , Hipocampo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Infusiones Intraventriculares , Insulina/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The brain represents 2% of the adult body mass; conversely, it is responsible for 20% to 25% of the glucose and 20% of the oxygen consumption, receiving 15% of the cardiac output. This substantial metabolic rate is associated with a significant production of biological debris, which is potentially toxic. Therefore, a complex and efficient clearance system is required to prevent the accumulation of byproducts and ensure optimal function. However, until today, there is little knowledge about this topic. The glymphatic system, also known as perivascular pathway, is a recently described glialdependent network that is responsible for the clearance of metabolites from the central nervous system (CNS), playing a role equivalent to the one played by the lymphatic vessels present in other organs. Studies have demonstrated that the glymphatic pathway has a paramount role in protein homeostasis, and that the malfunction of this system may be related to the development of neurodegenerative disorders such as Alzheimer disease and normal pressure hydrocephalus. They also showed that body posture, exercise and the state of consciousness influence the glymphatic transport. In this context, the understanding of this clearance system could not only clarify the pathophysiology of several diseases, but also contribute to future therapeutic interventions. In the present article, we will evaluate the glymphatic pathway, focusing on the factors that regulate its flow, as well as on its role in CNS physiology and in disease initiation and progression, including dementia, hydrocephalus, glaucoma and traumatic brain injury. Ultimately, this review also aims to encourage further research on novel therapeutic targets.
Asunto(s)
Humanos , Animales , Enfermedades Neurodegenerativas/fisiopatología , Sistema Glinfático/fisiología , Sueño/fisiología , Envejecimiento/fisiología , Tasa de Depuración Metabólica , Glaucoma/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Sistema Glinfático/fisiopatología , Sistema Glinfático/metabolismo , Hidrocéfalo Normotenso/fisiopatologíaRESUMEN
Interictal hypometabolism is commonly measured by 18-fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) in the temporal lobe of patients with mesial temporal lobe epilepsy (MTLE-HS). Left temporal lobe interictal FDG-PET hypometabolism has been associated with verbal memory impairment, while right temporal lobe FDG-PET hypometabolism is associated with nonverbal memory impairment. The biochemical mechanisms involved in these findings remain unknown. In comparison to healthy controls (n=21), surgically treated patients with MTLE-HS (n=32, left side=17) had significant lower scores in the Rey Auditory Verbal Learning Test (RAVLT retention and delayed), Logical Memory II (LMII), Boston Naming test (BNT), Letter Fluency and Category Fluency. We investigated whether enzymatic activities of the mitochondrial enzymes Complex I (C I), Complex II (C II), Complex IV (C IV) and Succinate Dehydrogenase (SDH) from the resected samples of the middle temporal neocortex (mTCx), amygdala (AMY) and hippocampus (HIP) were associated with performance in the RAVLT, LMII, BNT and fluency tests of our patients. After controlling for the side of hippocampus sclerosis, years of education, disease duration, antiepileptic treatment and seizure outcome after surgery, no independent associations were observed between the cognitive test scores and the analyzed mitochondrial enzymatic activities (p>0.37). Results indicate that memory and language impairment observed in MTLE-HS patients are not strongly associated with the levels of mitochondrial CI, CII, SDH and C IV enzymatic activities in the temporal lobe structures ipsilateral to the HS lesion.
Asunto(s)
Encéfalo/metabolismo , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/patología , Trastornos de la Memoria/etiología , Complejos Multienzimáticos/metabolismo , Adulto , Anticonvulsivantes/uso terapéutico , Encéfalo/diagnóstico por imagen , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Electroencefalografía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Estadísticas no ParamétricasRESUMEN
It is a widespread notion that the proportion of glial to neuronal cells in the brain increases with brain size, to the point that glial cells represent "about 90% of all cells in the human brain." This notion, however, is wrong on both counts: neither does the glia/neuron ratio increase uniformly with brain size, nor do glial cells represent the majority of cells in the human brain. This review examines the origin of interest in the glia/neuron ratio; the original evidence that led to the notion that it increases with brain size; the extent to which this concept can be applied to white matter and whole brains and the recent supporting evidence that the glia/neuron ratio does not increase with brain size, but rather, and in surprisingly uniform fashion, with decreasing neuronal density due to increasing average neuronal cell size, across brain structures and species. Variations in the glia/neuron ratio are proposed to be related not to the supposed larger metabolic cost of larger neurons (given that this cost is not found to vary with neuronal density), but simply to the large variation in neuronal sizes across brain structures and species in the face of less overall variation in glial cell sizes, with interesting implications for brain physiology. The emerging evidence that the glia/neuron ratio varies uniformly across the different brain structures of mammalian species that diverged as early as 90 million years ago in evolution highlights how fundamental for brain function must be the interaction between glial cells and neurons.
Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Neuroglía/citología , Neuroglía/fisiología , Neuronas/citología , Neuronas/fisiología , Animales , Evolución Biológica , Tamaño de la Célula , Humanos , Tamaño de los Órganos , Sustancia Blanca/citología , Sustancia Blanca/fisiologíaRESUMEN
Lithium modulates several intracellular pathways related to neuroplasticity and resilience against neuronal injury. These properties have been consistently reported in experimental models, and involve the up-regulation of neurotrophic response and autophagy, and down-regulation of apoptosis, oxidative stress, and inflammation. Clinical and epidemiological studies in bipolar disorder show that acute treatment with lithium increases plasma concentrations of brain-derived neurotrophic factor, and long-term treatment lowers the risk of dementia. Neuroimaging studies indicate that lithium use is further associated with increased cortical thickness and larger hippocampal volumes. The objective of the present study was to evaluate whether these neurobiological properties of lithium reflect in increased regional brain glucose metabolism, as shown by [(18)F]FDG-PET. Participants (n = 19) were nondemented older adults recruited at the end point of a controlled trial addressing clinical and biological effects of lithium in a sample of patients with amnestic mild cognitive impairment. Twelve patients who had received low-dose lithium carbonate for 4 years were compared to seven matched controls. Chronic lithium treatment was not associated with any significant increase in brain glucose metabolism in the studied areas. Conversely, we found a significant reduction in glucose uptake in several clusters of the cerebellum and in both hippocampi. These findings were not associated with any clinical evidence of toxicity. The clinical implications of the present findings need to be clarified by future controlled studies, particularly in the light of the potential use of lithium as a disease-modifying treatment approach for certain neurodegenerative disorders, namely, Alzheimer's disease and amyotrophic lateral sclerosis.
Asunto(s)
Cerebelo/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Glucosa/metabolismo , Hipocampo/efectos de los fármacos , Carbonato de Litio/uso terapéutico , Psicotrópicos/uso terapéutico , Anciano , Mapeo Encefálico , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Disfunción Cognitiva/metabolismo , Femenino , Fluorodesoxiglucosa F18 , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Masculino , Tomografía de Emisión de Positrones , RadiofármacosRESUMEN
The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H2O2). The production of H2O2 also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F0F1ATP synthase) and ΔΨm to regulate mitochondrial H2O2 production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H2O2 production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H2O2 production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H2O2 production when complexes I and F0F1ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production.
Asunto(s)
Encéfalo/ultraestructura , Peróxido de Hidrógeno/farmacología , Insulina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidantes/farmacología , Adenosina Difosfato/farmacología , Adenosina Trifosfato/farmacología , Animales , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Transporte de Electrón , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Consumo de Oxígeno , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sinaptosomas/efectos de los fármacos , Factores de TiempoRESUMEN
Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD), leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses (AU)
Alterações metabólicas são frequentes em pacientes com esquizofrenia e transtorno bipolar (TB), levando a uma alta prevalência de diabetes e síndrome metabólica nessa população. Além disso, as taxas de mortalidade entre pacientes são mais altas do que na população geral, especialmente em decorrência de doenças cardiovasculares. Vários sistemas neurobiológicos envolvidos no metabolismo energético têm demonstrado alterações nas duas doenças; no entanto, a causa das alterações metabólicas e a forma como elas se relacionam com a fisiopatologia da esquizofrenia e do TB ainda são arenas em grande parte desconhecidas. A teoria do "cérebro egoísta" é um paradigma recente que postula que, para manter estável seu próprio fornecimento de energia, o cérebro modula o metabolismo da energia na periferia regulando tanto a alocação quanto a ingestão de nutrientes. Apresentamos neste artigo a hipótese de que as alterações metabólicas observadas nesses transtornos são resultado de uma regulação ineficiente do fornecimento de energia do cérebro e seus mecanismos compensatórios. A teoria do cérebro egoísta também pode expandir nosso entendimento sobre a adaptação ao estresse e a neuroprogressão na esquizofrenia e no TB, e, acima de tudo, pode ter implicações clínicas importantes para as duas doenças (AU)
Asunto(s)
Humanos , Esquizofrenia/metabolismo , Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , Esquizofrenia/etiología , Esquizofrenia/fisiopatología , Estrés Psicológico/fisiopatología , Trastorno Bipolar/etiología , Trastorno Bipolar/fisiopatología , Adaptación Fisiológica/fisiología , Progresión de la Enfermedad , Susceptibilidad a Enfermedades/fisiopatología , Metabolismo Energético , AlostasisRESUMEN
Traumatic Brain Injury (TBI) is an important Public Health issue in Chile and the world. It represents a frequent cause of consultation, constituting a significant cause of morbidity and mortality in the population under 45 years of age. Accidents are the main reason for TBI among the pediatric population, but child abuse is an important cause in children below 2 y.o. A proper evaluation is essential to develop timely and efficient treatment that avoids or decreases brain damage and eventual complications. For this purpose, it is essential that brain physiology and physiopathological changes triggered by TBI are clear and well known. Current concepts are presented in this paper, emphasizing brain hemodynamics, metabolism, and brain self-regulation.
El traumatismo encefalocraneano (TEC) es un importante problema de salud pública tanto en Chile como en el mundo. Representa un motivo de consulta frecuente constituyendo una de las mayores causas de morbi-mortalidad en la población menor de 45 años. Los accidentes son la principal causa de TEC en la población pediátrica, pero el maltrato infantil es una causa etiológica importante a considerar en los menores de 2 años. Realizar una correcta evaluación al paciente con TEC es fundamental para instaurar un tratamiento oportuno y eficiente con el fin de evitar y/o disminuir el daño cerebral y así prevenir eventuales complicaciones. Para ello es imprescindible el conocimiento de la fisiología cerebral y los cambios fisiopatológicos que se desencadenan posterior al TEC, conceptos que son revisados en este artículo con énfasis en la hemodinamia cerebral, metabolismo y autorregulación cerebral.
Asunto(s)
Humanos , Niño , Pediatría , Traumatismos Craneocerebrales/fisiopatología , Traumatismos Craneocerebrales/metabolismo , Edema Encefálico , Encéfalo/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Homeostasis , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismoRESUMEN
Recent studies have shown the health benefits of physical exercise, increasing the oxidative response of muscle. However, the effects of exercise on the brain are poorly understood and contradictory. The inhibition of creatine kinase (CK) activity has been associated with the pathogenesis of a large number of diseases, especially in the brain. Theobjective of this study was to determine the preventive effects of physical exercise in the hippocampus and cerebral cortex of mice after chronic cigarette smoke exposure. Eight to 10-week-old male mice (C57BL-6) were divided into four groups and submitted to an exercise program (swimming), 5 times a week, for 8 weeks. After this period, the animalswere passively exposed to cigarette smoke for 60 consecutive days, 3 times a day (4 Marlboro red cigarettes per session), for a total of 12 cigarettes. CK activity was measured in cerebral cortex and hippocampal homogenates. Enzyme activity was inhibited in the cerebral cortex of animals submitted to the inhalation of cigarette smoke.However, exercise prevented this inhibition. In contrast, CK activity remained unchanged in the hippocampus. This inhibition of CK by inhalation of cigarette smoke might be related to the process of cell death. Physical exercise played a preventive role in the inhibition of CK activity caused by exposure to cigarette smoke.
O exercício físico aeróbico tem demonstrado benefícios em pesquisas recentes, uma vez que aumenta a resposta oxidativa muscular, porém os efeitos do exercício sobre o cérebro são pouco conhecidos e bastante contraditórios. A inibição da atividade da enzima creatina quinase(CK) está relacionada à patogênese de um grande número de doenças, especialmente no cérebro, e que a disfunção mitocondrial leva ao dano na síntese de ATP. Este trabalho tem como objetivo verificar os efeitos preventivos do exercício físico no hipocampo e córtex cerebral de camundongos submetidos à exposição crônica da fumaça de cigarro. Foram utilizados 24 camundongos C57BL-6machos, com idade de entre 8-10 semanas, divididos em 4 grupo, foram submetidos a um programa de exercício (natação), cinco vezes por semana, durante 8 semanas, após esse período os animais foram expostos passivamente à fumaça de cigarro por 60 dias consecutivos, 3 vezes ao dia totalizando em 12 cigarros, 4 cigarros por vez, da marca Marlboro vermelho. A atividade enzimática da CK foi determinada em hipocampo e córtex cerebral. Os resultados mostraramque a atividade da enzima CK foi inibida no córtex cerebral dos animais submetidos à inalação da fumaça do cigarro, porém o exercício conseguiu prevenir esta alteração. A atividade da CK não foi alterada no hipocampo dos animais. Essa inibição da CK pela inalação da fumaça do cigarro pode estar relacionada com processos de morte celular. O exercício preventivo mostrou um papel protetor sobre a inibição dessa enzima.