Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Musculoskelet Neuronal Interact ; 23(4): 426-435, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037361

RESUMEN

OBJECTIVES: To examine effects of whole-body vibration (WBV) on bone properties in pre-type 2 diabetes mellitus (T2DM) rats. METHODS: Six-week-old male Hos:ZFDM-Lepr fa, fa/fa (DM) and Hos:ZFDM-Leprfa,fa/+ (CON; untreated non-DM) rats were used in the experiments. Half of DM rats were subjected to WBV (45 Hz, 0.5 g, 15 min/day, 5 days/week) for 8 weeks (WBV group), and the other half was not (DM group). RESULTS: Bone mass, trabecular bone microstructure (TBMS), and cortical bone geometry (CBG) parameters were worse in the DM and WBV groups compared with the CON group. Maximum load was significantly decreased in the DM group compared with the CON group, and the break point was significantly higher in the WBV group compared with the DM group. Serum levels of bone specific alkaline phosphatase were significantly lower in the WBV group compared with the CON group. Glycemic control was not worse in the WBV group compared with the DM group, but not the same levels as the CON group. CONCLUSIONS: These findings suggest that WBV can potentially delay the decrease in maximum load, although it does not prevent the deterioration of bone mass, TBMS, and CBG parameters.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vibración , Ratas , Masculino , Animales , Vibración/uso terapéutico , Huesos/diagnóstico por imagen , Densidad Ósea , Hueso Esponjoso
2.
Int Biomech ; 9(1): 19-26, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36384427

RESUMEN

This study aimed to examine the continuous effects of whole body vibration (WBV) on bone properties, in growing rats. Fifty 5-week-old male rats were divided into control and experimental groups. Each experimental group underwent WBV at 50 Hz (0.5 g, 15 min/day, 5 days/week) for 5 or 10 weeks. Bone size, muscle weight and bone mechanical strength of the right tibia were measured. Trabecular bone microstructure, cortical bone geometry and bone mass of the left tibia were analyzed by micro-CT. Serum levels of bone formation/resorption markers were also measured. In rats that underwent 5-week WBV, tibial cortical bone mineral content and cortical bone area significantly increased (p < 0.05), and tibial cortical bone volume, thickness, maximum load, break point and stiffness tended to be increased (p = 0.05-0.09), compared with control rats. In rats that underwent 10-week WBV, stiffness tended to be increased (p = 0.07), and the serum level of osteocalcin decreased, compared with control rats. These findings suggest that 5-week WBV had beneficial effects on bone properties, and that increased bone mineral content and cortical bone geometry may lead to higher bone mechanical strength. Further studies will be needed to determine the optimal conditions of WBV for improving bone properties in the growth stage.


Asunto(s)
Huesos , Vibración , Ratas , Masculino , Animales , Vibración/uso terapéutico , Huesos/diagnóstico por imagen , Densidad Ósea/fisiología , Hueso Esponjoso/diagnóstico por imagen , Hueso Cortical/diagnóstico por imagen
3.
Osteoporos Int ; 33(3): 725-735, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34643755

RESUMEN

Decreased cortical bone density and bone strength at peak height velocity (PHV) were noted in girls with adolescent idiopathic scoliosis (AIS). These findings could provide the link to the previously reported observation that low bone mineral density (BMD) could contribute as one of the prognostic factors for curve progression that mostly occurs during PHV in AIS. INTRODUCTION: As part of the studies related to aetiopathogenesis of AIS, we assessed bone qualities, bone mechanical strength and bone turnover markers (BTMs) focusing at the peri-pubertal period and PHV in AIS girls. METHODS: 396 AIS girls in two separate cohorts were studied. Skeletal maturity was assessed using the validated thumb ossification composite index (TOCI). Bone qualities and strength were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) and finite element analysis (FEA). RESULTS: Cohort-A included 179 girls (11.95 ± 0.95 years old). Girls at TOCI-4 had numerically the highest height velocity (0.71 ± 0.24 cm/month) corresponding to the PHV. Subjects at TOCI-4 had lower cortical volumetric BMD (672.36 ± 39.07 mg/mm3), cortical thickness (0.68 ± 0.08 mm) and apparent modulus (1601.54 ± 243.75 N/mm2) than: (a) those at TOCI-1-3 (724.99 ± 32.09 mg/mm3 (p < 0.001), 0.79 ± 0.11 mm (p < 0.001) and 1910.88 ± 374.75 N/mm2 (p < 0.001), respectively) and (b) those at TOCI-8 (732.28 ± 53.75 mg/mm3 (p < 0.001), 0.84 ± 0.14 mm (p < 0.001), 1889.11 ± 419.37 N/mm2 (p < 0.001), respectively). Cohort-B included 217 girls (12.22 ± 0.89 years old). Subjects at TOCI-4 had higher levels of C-terminal telopeptide of type 1 collagen (1524.70 ± 271.10 pg/L) and procollagen type 1 N-terminal propeptide (941.12 ± 161.39 µg/L) than those at TOCI-8 (845.71 ± 478.55 pg/L (p < 0.001) and 370.08 ± 197.04 µg/L (p < 0.001), respectively). CONCLUSION: AIS girls had decreased cortical bone density and bone mechanical strength with elevated BTMs at PHV. Coupling of PHV with decreased cortical and FEA parameters could provide the link to the previously reported observation that low BMD could contribute as one of the prognostic factors for curve progression that mostly occurs during PHV in AIS.


Asunto(s)
Escoliosis , Adolescente , Densidad Ósea , Remodelación Ósea , Niño , Hueso Cortical , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Escoliosis/diagnóstico por imagen
4.
J Musculoskelet Neuronal Interact ; 21(2): 287-297, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34059574

RESUMEN

OBJECTIVE: This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats. METHODS: Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT. RESULTS: Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties. CONCLUSION: Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.


Asunto(s)
Huesos , Vibración , Animales , Ratas , Densidad Ósea , Microtomografía por Rayos X
5.
Osteoporos Sarcopenia ; 5(3): 78-83, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31728424

RESUMEN

OBJECTIVES: To examine the effects of whole body vibration (WBV) on bone properties in growing rats, and to explore the optimal conditions for enhancing bone properties. METHODS: Thirty-six 4-week-old male rats were divided into 1 control and 5 experimental groups. Each experimental group underwent WBV at 15, 30, 45, 60, and 90 Hz (0.5 g, 15 min/d, 5 d/wk) for 8 weeks. We measured bone size, muscle weight and bone mechanical strength of the right tibia. Trabecular bone mass and trabecular bone microstructure (TBMS) of the left tibia were analyzed by micro-computed tomography. Serum levels of bone formation/resorption markers were also measured. RESULTS: WBV at 45 Hz and 60 Hz tended to enhance trabecular bone mass and TBMS parameters. However, there was no difference in maximum load of tibias among all groups. Serum levels of bone resorption marker were significantly higher in the 45-Hz WBV group than in the control group. CONCLUSIONS: WBV at 45-60 Hz may offer a potent modality for increasing bone mass during the period of rapid growth. Further studies are needed to explore the optimal WBV conditions for increasing peak bone mass and TBMS parameters. WBV modality may be a potent strategy for primary prevention against osteoporosis.

6.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-760738

RESUMEN

OBJECTIVES: To examine the effects of whole body vibration (WBV) on bone properties in growing rats, and to explore the optimal conditions for enhancing bone properties. METHODS: Thirty-six 4-week-old male rats were divided into 1 control and 5 experimental groups. Each experimental group underwent WBV at 15, 30, 45, 60, and 90 Hz (0.5 g, 15 min/d, 5 d/wk) for 8 weeks.We measured bone size, muscle weight and bone mechanical strength of the right tibia. Trabecular bone mass and trabecular bone microstructure (TBMS) of the left tibia were analyzed by micro-computed tomography. Serum levels of bone formation/resorption markers were also measured. RESULTS: WBV at 45 Hz and 60 Hz tended to enhance trabecular bone mass and TBMS parameters. However, there was no difference in maximum load of tibias among all groups. Serum levels of bone resorption marker were significantly higher in the 45-Hz WBV group than in the control group. CONCLUSIONS: WBV at 45–60 Hz may offer a potent modality for increasing bone mass during the period of rapid growth. Further studies are needed to explore the optimal WBV conditions for increasing peak bone mass and TBMS parameters. WBV modality may be a potent strategy for primary prevention against osteoporosis.


Asunto(s)
Animales , Humanos , Masculino , Ratas , Resorción Ósea , Osteoporosis , Prevención Primaria , Tibia , Vibración
7.
Calcif Tissue Int ; 102(3): 358-367, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29103160

RESUMEN

The purpose of this study was to examine the effects of green tea extract (GTE) intake on bone structural and physiological properties, such as bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength, in growing rats. Four-week-old male Wistar rats were divided into the following four groups: standard diet feeding for 85 days (S-CON) or 170 days (L-CON), and GTE diet feeding for 85 days (S-GTE) or 170 days (L-GTE). At the end of the experiment, in addition to measurement of circulating bone formation/resorption markers, bone mass, trabecular bone microarchitecture, and cortical bone geometry were analyzed in the left femur, and bone mechanical strength of the right femur was measured. There was no difference in all bone parameters between the S-CON and S-GTE groups. On the other hand, the L-GTE group showed the decrease in some trabecular bone mass/microarchitecture parameters and no change in cortical bone mass/geometry parameters compared with the L-CON group, and consequently the reduction in bone weight corrected by body weight. There was no difference in bone formation/resorption markers and bone mechanical strength between the S-CON and S-GTE groups and also between the L-CON and L-GTE groups. However, serum leptin levels were significantly lower in the L-GTE group than in the L-CON group. Thus, the long-term GTE intake had negative effects on bone, especially trabecular bone loss and microarchitecture mal-conformation, in growing rats.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Fémur/crecimiento & desarrollo , Té/efectos adversos , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Densidad Ósea/fisiología , Hueso Cortical/crecimiento & desarrollo , Fémur/efectos de los fármacos , Leptina/metabolismo , Masculino , Ratas , Ratas Wistar
8.
Chinese Pharmacological Bulletin ; (12): 1446-1451, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-614866

RESUMEN

Aim To investigate the effect of curcumin against high-fat-diet induced C57BL/6J mice bone changes and the correlation between the expression of cathepsin K and curcumin.Methods Curcumin treated C57BL/6J mice had been on high fat diet for 12 weeks.The HE, Alizarin red S staining and Safranin O/fast green staining of femur were employed to evaluate bone microstructure, bone metabolism and bone development.The expressions of cathepsin K were assessed by Western blot and immunohistochemical staining.Results Histopathological results showed that curcumin could improve the destruction of trabecular bone structure, cartilage development and bone calcification.Biomechanical results proved that curcumin could improve the bone strength of the type 2 diabetic mice induced by high fat.The results of immunohistochemistry and Western blot assay indicated that curcumin could significantly inhibit the expression of cathepsin K in bone tissues of mice.Conclusion Curcumin can increase bone strength, improve bone microstructure, and enhance the degree of bone calcification, which may be achieved by inhibiting the expression of cathepsin K.

9.
Eur J Pharmacol ; 788: 65-74, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27316792

RESUMEN

Dalbergia sissoo Roxb. is a well known medicinal plant of India, enriched with various flavonoids used for treating multiple diseases. Earlier, we have shown that extract of Dalbergia sissoo Roxb. leaves mitigate ovariectomy induced bone loss and pure compounds (neoflavonoids) isolated from it, promote osteoblastogenesis in primary calvarial osteoblasts cells in vitro. Here, we hypothesize that dalsissooal (DSL), a novel neoflavonoid isolated from the heartwood of Dalbergia sissoo Roxb. is an important constituent of the extract that imparts bone forming effects. Treatment with DSL enhanced trabecular bone micro-architecture parameters, biomechanical strength, increased bone formation rate and mineral apposition rate in OVx mice comparable to 17ß-estradiol. It increased bone formation by enhancing osteoblast gene expression and reduced bone turnover by decreasing osteoclastic gene expressions. Interestingly, we observed that DSL has no uterine estrogenic effects. At cellular levels, DSL promoted differentiation of bone marrow cells as well as calvaria osteoblast cells towards osteoblast lineage by enhancing differentiation and mineralizing ability to form mineralizing nodules via stimulating BMP-2 and RunX-2 expressions. Overall, our data suggest that oral supplementation of a novel neoflavonoid dalsissooal isolated from heartwood of Dalbergia sissoo Roxb. exhibited bone anabolic action by improving structural property of bone, promoting new bone formation and reducing bone turnover rate in post-menopausal model for osteoporosis with no uterine hyperplasia.


Asunto(s)
Acroleína/análogos & derivados , Dalbergia/química , Flavonoides/farmacología , Osteogénesis/efectos de los fármacos , Osteoporosis/fisiopatología , Fenoles/farmacología , Acroleína/aislamiento & purificación , Acroleína/farmacología , Animales , Calcificación Fisiológica/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/patología , Hueso Esponjoso/fisiopatología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estrógenos/deficiencia , Femenino , Flavonoides/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteocalcina/sangre , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Fenoles/aislamiento & purificación , Hojas de la Planta/química , Útero/efectos de los fármacos , Útero/metabolismo
10.
Artículo en Japonés | WPRIM (Pacífico Occidental) | ID: wpr-362184

RESUMEN

This study investigated how different treadmill running periods effected bone mechanical strength in ovariectomized mice. Eighty female ICR mice aged 12-weeks-old were used. All mice were divided into 8 groups (<i>n</i>=10) randomly, and had either a sham-operation (<i>n</i>=10) or an ovariectomy (<i>n</i>=70). The SHAM group and one OVX group (NR) were used as non-running control groups, with the remainder comprising the treadmill running groups : the LA (8 m/min), MA (16 m/min), and HA (24 m/min) groups which ran for 12 weeks, and the LB (8 m/min), MB (16 m/min), HB (24 m/min) groups which ran for 6 weeks for 25 min on 5 days/week. After this experiment, maximum loads for the femur and tibia were measured by three-pointed bending test, and the bone mechanical strength of the bones was calculated. Also, the dry bone weight and ash content of the bones were measured. Maximum femur and tibia load and bone mechanical strength were affected by running speed and term significantly. Maximum load and bone mechanical strength of tibia were shown as an interaction. Bone mechanical strength in all running groups was higher than that in the NR group, significantly. This study suggested that treadmill running prevented a reduction of bone mechanical strength, and that treadmill running was most effective in the LA and MA groups (running at low and medium speed and for a long period).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA