Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.453
Filtrar
1.
BMJ Open ; 14(9): e084372, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237275

RESUMEN

BACKGROUND: Assessing multidisciplinary prehabilitation strategies becomes crucial to pre-emptively counter the physical, psychological and social negative impacts experienced during an allogenic haematopoietic stem cell transplant (allo-HSCT) among acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients. Current evidence is restricted to studies during induction chemotherapy, omitting rehabilitation interventions and predominantly using exercise-only approaches without a multidisciplinary framework. The aim of this study is to investigate the feasibility, safety and preliminary efficacy of multidisciplinary prehabilitation in adults offered allo-HSCT. METHODS AND ANALYSIS: This 8-week single-group pre-post feasibility study aims to pilot a multidisciplinary prehabilitation intervention for participants undergoing allo-HSCT, with a focus on feasibility and safety. Participants, aged 18 or older, diagnosed with AML or MDS, and offered allo-HSCT, will be recruited between June 2023 and July 2024. The multidisciplinary prehabilitation intervention, conducted by the cancer allied health team at the Royal Adelaide Hospital, includes exercise physiology, physiotherapy, dietetics, social work, occupational therapy and psychology interventions. Consistent with a multidisciplinary treatment approach, each component is tailored to address different aspects of patient care, and adherence calculations will assess patient engagement and compliance. In addition, participants will continue to receive usual care from cancer allied health staff. The primary outcome of the study is to assess the feasibility of a multidisciplinary prehabilitation intervention by evaluating intervention uptake, retention, adherence, acceptability and safety. Secondary outcomes are leg strength, upper-body strength, aerobic fitness, falls risk, anthropometry, nutritional status, quality of life, anxiety, depression, self-efficacy for coping with cancer and distress. ETHICS AND DISSEMINATION: Ethics approval for this study has been provided by the Central Adelaide Local Health Network (HREC 2022/HRE00284). Recruitment for the study commenced in June 2023 and will continue until July 2024. The methods have been designed and are reported according to the SPIRIT and CONSORT-pilot study checklist. TRIAL REGISTRATION NUMBER: The Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12623000052639.


Asunto(s)
Estudios de Factibilidad , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Ejercicio Preoperatorio , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/rehabilitación , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/rehabilitación , Calidad de Vida , Proyectos Piloto , Adulto , Trasplante Homólogo
2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273265

RESUMEN

The system of nitric oxide synthases (NOSs) is comprised of three isoforms: nNOS, iNOS, and eNOS. The roles of NOSs in respiratory diseases in vivo have been studied by using inhibitors of NOSs and NOS-knockout mice. Their exact roles remain uncertain, however, because of the non-specificity of inhibitors of NOSs and compensatory up-regulation of other NOSs in NOS-KO mice. We addressed this point in our triple-n/i/eNOSs-KO mice. Triple-n/i/eNOSs-KO mice spontaneously developed pulmonary emphysema and displayed exacerbation of bleomycin-induced pulmonary fibrosis as compared with wild-type (WT) mice. Triple-n/i/eNOSs-KO mice exhibited worsening of hypoxic pulmonary hypertension (PH), which was reversed by treatment with sodium nitrate, and WT mice that underwent triple-n/i/eNOSs-KO bone marrow transplantation (BMT) also showed aggravation of hypoxic PH compared with those that underwent WT BMT. Conversely, ovalbumin-evoked asthma was milder in triple-n/i/eNOSs-KO than WT mice. These results suggest that the roles of NOSs are different in different pathologic states, even in the same respiratory diseases, indicating the diversity of the roles of NOSs. In this review, we describe these previous studies and discuss the roles of NOSs in respiratory health and disease. We also explain the current state of development of inorganic nitrate as a new drug for respiratory diseases.


Asunto(s)
Ratones Noqueados , Animales , Ratones , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/genética , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
3.
Sci Rep ; 14(1): 21489, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277663

RESUMEN

Age-related osteoporosis is a prevalent bone metabolic disorder distinguished by an aberration in the equilibrium between bone formation and resorption. The reduction in the stemness of Bone Marrow Mesenchymal Stem Cells (BMSCs) plays a pivotal role in the onset of this ailment. Comprehending the molecular pathways that govern BMSCs stemness is imperative for delineating the etiology of age-related osteoporosis and devising efficacious treatment modalities. The study utilized single-cell RNA sequencing and miRNA sequencing to investigate the cellular heterogeneity and stemness of BMSCs. Through dual-luciferase reporter assays and functional experiments, the regulatory effect of miR-183 on CTNNB1 (ß-catenin) was confirmed. Overexpression and knockdown studies were conducted to explore the impact of miR-183 and ß-catenin on stemness-related transcription factors Oct4, Nanog, and Sox2. Cell proliferation assays and osteogenic differentiation experiments were carried out to validate the influence of miR-183 and ß-catenin on the stemness properties of BMSCs. Single-cell analysis revealed that ß-catenin is highly expressed in both high stemness clusters and terminal differentiation clusters of BMSCs. Overexpression of ß-catenin upregulated stemness transcription factors, while its suppression had the opposite effect, indicating a dual regulatory role of ß-catenin in maintaining BMSCs stemness and promoting bone differentiation. Furthermore, the confluence of miRNA sequencing analyses and predictions from online databases revealed miR-183 as a potential modulator of BMSCs stemness and a novel upstream regulator of ß-catenin. The overexpression of miR-183 effectively diminished the stemness characteristics of BMSCs by suppressing ß-catenin, whereas the inhibition of miR-183 augmented stemness. These outcomes align with the observed alterations in the expression levels and functional assessments of transcription factors associated with stemness. This study provides evidence for the essential involvement of ß-catenin in preserving the stemness of BMSCs, as well as elucidating the molecular mechanism through which miR-183 selectively targets ß-catenin to modulate stemness. These results underscore the potential of miR-183 and ß-catenin as molecular targets for augmenting the stemness of BMSCs. This strategy is anticipated to facilitate the restoration of bone microarchitecture and facilitate bone tissue regeneration by addressing potential cellular dysfunctions, thereby presenting novel targets and perspectives for the management of age-related osteoporosis.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Osteoporosis , beta Catenina , MicroARNs/genética , MicroARNs/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Animales , Diferenciación Celular/genética , Humanos , Proliferación Celular/genética , Análisis de la Célula Individual , Regulación de la Expresión Génica , Ratones
4.
Stem Cell Res Ther ; 15(1): 303, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278906

RESUMEN

BACKGROUND: Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS: In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS: We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION: The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.


Asunto(s)
Células Madre Hematopoyéticas , Proteómica , Especies Reactivas de Oxígeno , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Feto/metabolismo , Feto/citología , Adulto , Sangre Fetal/citología , Sangre Fetal/metabolismo , Butionina Sulfoximina/farmacología , Glutatión/metabolismo
5.
Quant Imaging Med Surg ; 14(9): 6374-6385, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39281118

RESUMEN

Background: As constituents of the reticuloendothelial system, the spleen and bone marrow (BM) have been recognized as integral components of the systemic inflammatory response in cancer contexts, thereby serving as predictive indicators for assessing cancer prognosis. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) has attained widespread utilization for staging, assessing treatment response, and prognostication in lymphoma patients. Several investigations have proposed that focal increased 18F-FDG uptake in the BM or spleen may correlate with malignant involvement in lymphoma. However, scant data exist regarding the implications of diffuse BM and splenic uptake. This study aimed to explore the relationships between metabolic parameters of the spleen and BM on 18F-FDG PET/CT and inflammatory markers, and to assess their prognostic value in patients with lymphoma. Methods: A retrospective analysis was conducted on 118 patients newly diagnosed with malignant lymphoma, who underwent 18F-FDG PET/CT and exhibited diffuse increased splenic or BM uptake in 18F-FDG PET/CT imaging. The mean standardized uptake value (SUV) of the spleen, BM, and liver was calculated. The association between metabolic variables and systemic inflammatory markers was investigated, and the prognostic significance of clinicopathological and PET parameters was assessed using overall survival (OS) and progression-free survival (PFS). Results: A statistically significant correlation was found between the spleen-to-liver SUV ratio (SLR) and inflammatory markers such as C-reactive protein (r=0.264, P=0.007) and platelet-to-lymphocyte ratio (r=0.227, P=0.021). No significant correlation was observed between BM-to-liver SUV ratio (BLR) and hematologic parameters, while concordance analysis revealed a fair agreement between BLR and bone marrow biopsy (BMB) (Cohen's Kappa-κ =0.271, P=0.002). In patients with aggressive non-Hodgkin lymphoma, both SLR [P=0.017, HR 2.715, 95% confidence interval (CI): 0.875-8.428] and BLR (P=0.044, HR 0.795, 95% CI: 0.348-1.813) were significantly linked to OS, while SLR (P=0.019, HR 2.223, 95% CI: 1.139-4.342) emerged as a significant prognostic factor for PFS. Conclusions: This study highlighted that diffuse increased splenic 18F-FDG uptake in lymphoma patients was closely associated with inflammation, whereas diffuse BM uptake was likely attributable to BM infiltration rather than inflammatory changes. Furthermore, both parameters held promise as prognostic indicators for patients with aggressive lymphoma.

6.
J Pain Res ; 17: 2951-3001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282657

RESUMEN

Purpose: Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods: The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results: Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion: In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.

7.
BMC Med Imaging ; 24(1): 247, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285283

RESUMEN

OBJECTIVE: To evaluate early bone marrow microvascular changes in alloxan-induced diabetic rabbits using IDEAL-IQ fat quantification, texture analysis based on DCE-MRI Ktrans map, and metabolomics. MATERIALS AND METHODS: 24 male Japanese rabbits were randomly divided into diabetic (n = 12) and control (n = 12) groups. All rabbits underwent sagittal MRI of the lumbar vertebrae at the 0th,4th, 8th, 12th, and 16th week, respectively. The fat fraction (FF) ratio and quantitative permeability of the lumbar bone marrow was measured. Texture parameters were extracted from DCE-MRI Ktrans map. At 16th week, lumbar vertebrae 5 and 6 were used for histological analysis. Lumbar vertebra 7 was crushed to obtain bone marrow for metabolomics research. RESULTS: The FF ratio and Ktrans of the lumbar bone marrow in diabetic group were increased significantly at 16th week (t = 2.226, P = 0.02; Z = -2.721, P < 0.01). Nine texture feature parameters based on DCE-MRI Ktrans map were significantly different between the groups at the 16th week (all P < 0.05). Pathway analysis showed that diabetic bone marrow microvascular changes were mainly related to linoleic acid metabolism. Differential metabolites were correlated with the number of adipocytes, FF ratio, and permeability parameters. CONCLUSION: The integration of metabolomics with texture analysis based on DCE-MRI Ktrans map may be used to evaluate diabetic bone marrow microvascular changes at an early stage. It remains to be validated in clinical studies whether the integration of metabolomics with texture analysis based on the DCE-MRI Ktrans map can effectively evaluate diabetic bone marrow.


Asunto(s)
Médula Ósea , Diabetes Mellitus Experimental , Imagen por Resonancia Magnética , Metabolómica , Animales , Conejos , Masculino , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/metabolismo , Médula Ósea/diagnóstico por imagen , Médula Ósea/metabolismo , Imagen por Resonancia Magnética/métodos , Metabolómica/métodos , Vértebras Lumbares/diagnóstico por imagen , Aloxano , Microvasos/diagnóstico por imagen , Microvasos/metabolismo , Medios de Contraste
8.
J Orthop Surg Res ; 19(1): 572, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285416

RESUMEN

BACKGROUND: Osteoporosis results from decreased bone mass and disturbed bone structure. Human bone marrow mesenchymal stem cells (hBMSCs) demonstrate robust osteogenic differentiation, a critical process for bone formation. This research was designed to examine the functions of LINC01133 in osteogenic differentiation. METHODS: Differentially expressed lncRNAs affecting osteogenic differentiation in hBMSCs were identified from the GEO database. A total of 74 osteoporosis patients and 70 controls were enrolled. hBMSCs were stimulated to undergo osteogenic differentiation using an osteogenic differentiation medium (OM). RT-qPCR was performed to evaluate LINC01133 levels and osteogenesis-related genes such as osteocalcin, osteopontin, and RUNX2. An alkaline phosphates (ALP) activity assay was conducted to assess osteogenic differentiation. Cell apoptosis was detected using flow cytometry. Dual luciferase reporter assay and RIP assay were employed to investigate the association between miR-214-3p and LINC01133 or CTNNB1. Loss or gain of function assays were conducted to elucidate the impact of LINC01133 and miR-214-3p on osteogenic differentiation of hBMSCs. RESULTS: LINC01133 and CTNNB1 expression decreased in osteoporotic patients but increased in OM-cultured hBMSCs, whereas miR-214-3p showed an opposite trend. Depletion of LINC01133 suppressed the expression of genes associated with bone formation and ALP activity triggered by OM in hBMSCs, leading to increased cell apoptosis. Nevertheless, this suppression was partially counteracted by the reduced miR-214-3p levels. Mechanistically, LINC01133 and CTNNB1 were identified as direct targets of miR-214-3p. CONCLUSIONS: Our study highlights the role of LINC01133 in positively regulating CTNNB1 expression by inhibiting miR-214-3p, thereby promoting osteogenic differentiation of BMSCs. These findings may provide valuable insights into bone regeneration in osteoporosis.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Osteoporosis , ARN Largo no Codificante , Regulación hacia Arriba , beta Catenina , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Diferenciación Celular/genética , ARN Largo no Codificante/genética , beta Catenina/genética , beta Catenina/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Células Cultivadas , Femenino , Persona de Mediana Edad , Masculino , Apoptosis/genética , Células de la Médula Ósea/metabolismo
9.
Cureus ; 16(8): e67067, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39286681

RESUMEN

Stem cell (SC) therapy is revolutionizing the field of plastic surgery by harnessing the regenerative abilities of SCs derived from adipose tissue and bone marrow to boost tissue repair and enhance aesthetic outcomes. This groundbreaking method enhances results in procedures such as fat grafting, facial rejuvenation, and wound healing. As studies advance, SC therapy shows potential for more sophisticated uses in both reconstructive and cosmetic surgery. The objective of this review is to comprehensively examine the advances in SC therapy within the field of plastic surgery, highlighting its current applications and exploring future directions. The systematic review was conducted on SC therapy in plastic surgery adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and specific search criteria. This systematic review highlights these main outcomes, and SC therapy in plastic surgery enhances tissue repair and aesthetic outcomes by utilizing mesenchymal SCs such as adipose-derived SCs (ADSCs) and bone marrow-derived SCs (BMSCs), with platelet-rich plasma (PRP) providing additional support. Techniques such as scaffolds and cellular reprogramming are employed to guide SC growth, enabling tailored tissue engineering for complex regenerative procedures. This innovative approach accelerates healing, reduces scarring in reconstructive surgeries, improves skin texture, and ensures the natural integration of treated areas, ultimately yielding enhanced aesthetic results and transforming facial rejuvenation processes. SC therapy in plastic surgery holds great promise, but challenges such as protocol standardization, cost, and regulations still need to be addressed. SC therapy is leading innovative advancements in plastic surgery, offering superior outcomes and improved quality of life for patients. Interestingly, the future of plastic surgery is focused on integrating SC therapy for personalized and transformative treatments. Furthermore, interdisciplinary collaboration among bioengineers, clinicians, and regulatory bodies is essential for overcoming challenges and advancing SC research into clinical practice.

12.
J Forensic Leg Med ; 107: 102753, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288616

RESUMEN

Diatoms (Bacillariophyta), being single-celled photosynthetic organisms, are widely distributed in aquatic ecosystems around the globe. Their exoskeletons are resistant to most environmental factors as well as chemical reagents in laboratory settings. Moreover, the ornamentation featured on exoskeletons can be used to identify individual diatomaceous species. As a result, the detection of diatoms in the internal organs, and especially rib marrow, of corpses found in water can serve as an important tool for diagnosing drowning as the cause of death as long as passive postmortem penetration of diatoms into those organs is excluded. In the environmental experiments described in this paper, diatoms were detected in rib marrow only when contamination resulted from a mechanical breach of bone integrity and structure, irrespective of the residence time of bone material in the aquatic environment. Our research suggests that the presence of diatom in the rib marrow may be the gold standard in the diagnosis of drowning in the future. Our animal model research dispels one of the doubts, such as the possibility of passive penetration of diatoms into the bone marrow, which is still under discussion in the forensic medicine community.

13.
Vet Clin Pathol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289176

RESUMEN

An eight-year-old male neutered crossbreed dog presented with erosive and ulcerative cutaneous lesions in the inguinal regions, the medial aspect of both thighs, and the stifles. Hematologic assessment revealed nonregenerative anemia, thrombocytopenia, and high numbers of neoplastic mononuclear cells with a variable degree of maturation. The mononuclear neoplastic cells, with nuclei measuring 10-20 microns in diameter, accounted for 57% of the nucleated blood cells. In addition, the blood contained increased numbers of mature neutrophils and monocytes with atypical morphology. Cytologic examination of the right popliteal lymph node found high numbers of large mononuclear cells with similar morphology to those in the peripheral blood. Flow cytometry of peripheral blood revealed expression by the mononuclear neoplastic cells of the pan-leukocyte marker CD45 and myeloid markers CD14, MAC387, and myeloperoxidase (MPO). These results confirmed a diagnosis of acute myeloid leukemia (AML). Computed tomography found moderate nodular hepatosplenomegaly and multifocal bi-cavitary lymphadenopathy. Histopathologic examination of biopsies from the cutaneous lesions identified infiltration of the dermis by intermediate to large neoplastic round cells. Further treatment was declined, and the owners elected euthanasia. Postmortem examination confirmed AML involvement in the bone marrow, peripheral and intracavitary lymph nodes, heart, liver, kidney, and skin. Neoplastic cells in the bone marrow and skin showed positive immunolabeling for ionized calcium-binding adaptor protein 1 and MPO. To the best of our knowledge, this is the first report of ulcerative cutaneous lesions observed among the presenting clinical signs in a dog with AML and secondary leukemia cutis.

14.
Stem Cell Res ; 81: 103532, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276527

RESUMEN

Induced pluripotent stem cells (iPSCs) harboring patient derived SAMD9 mutation offer a unique platform to study the multi-organ involvement observed in this rare disease, referred to as myelodysplasia, infections, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy (MIRAGE) syndrome. The pluripotent nature of iPSCs allows in vitro differentiation into various somatic cell types representing multiple organ systems affected in SAMD9-mutated patients. Hence, in this paper, we present a CRISPR/Cas9-engineered iPSC model carrying SAMD9 c.2948T>G, p.I983S mutation previously reported in two patients with severe MIRAGE syndrome.

15.
Cell ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276774

RESUMEN

Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.

16.
Transplant Cell Ther ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277113

RESUMEN

The Third Annual Workshop of the American Society for Transplantation and Cellular Therapy (ASTCT) and National Marrow Donor Program (NMDP) ACCESS Initiative occurred on July 23 and 24, 2024. Content from the workshop is provided to inform the hematopoietic cell transplantation (HCT) and cellular therapy (CT) ecosystem about progress and direction of the collaborative. Highlights from the meeting are reviewed, including the inaugural Corporate Roundtable and Advocacy Day, new partnerships with non-profit organizations, and updates on projects from the Awareness, Poverty and Race and Ethnicity Inequity Committees. In addition, the Junior Faculty and Trainee Immersion Program-sponsored efforts in workforce diversity and physician advocacy are also presented. Lastly, continued education was provided on patient and caregiver participation as well as community engagement. As it enters its third year, the ASTCT-NMDP ACCESS Initiative will transition from foundation-building as a grass roots collaborative to intentional impact in reducing barriers and improving outcome disparities for all patients in need of HCT/CT. Enthusiasm for and participation in the ACCESS Initiative remain high and both are needed to sustain progress in achieving its goal in enabling all patients in need to receive HCT/CT.

17.
Bull Exp Biol Med ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279005

RESUMEN

We developed a model of inflammation and airway remodeling in C57 mice provoked by exosomes derived from bone marrow mesenchymal stem cells infected by respiratory syncytial virus (RSV). The mean size of control and infected exosomes in vitro were 167.9 and 118.5 nm, respectively. After induction of modeled pathology, the severity of airway inflammation and its remodeling were analyzed by histopathological methods. In addition, the blood levels of inflammatory factors IL-10, IL-17, transforming growth factor-ß (TGF-ß), and TNFα were assayed; in the lung tissues, the expression levels of MMP-2, MMP-9, α-smooth muscle actin (α-SMA), and TGF-ß were measured. In the developed model, the effects of RSV-induced and non-induced exosomes were compared with those of inactivated and non-inactivated RSV. Intranasal administration of RSV-induced exosomes decreased the levels of serum inflammatory factors IL-10 and IL-17 and increased the expression of serum proinflammatory cytokine TNFα. Increased levels of MMP-2, MMP-9, and α-SMA, enhanced expression of TGF-ß in the lung tissue, and pathological staining of the lung tissues indicated infiltration with inflammatory cells and luminal constriction. Thus, RSV-induced exosomes can provoke airway inflammation and remodeling in mice similar to RSV, while non-induced exosomes cannot produce such alterations.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39284370

RESUMEN

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematological abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored. OBJECTIVE: This study comprehensively examined the BM and peripheral blood of pediatric and adult patients with DADA2 presenting rheumatologic/immunologic symptoms or severe hematological manifestations. METHODS: Immunophenotyping of hematopoietic stem cells (HSCs), progenitor cells, and mature cell populations was performed for 18 patients with DADA2. We also conducted a characterization of the mesenchymal stromal cells (MSCs). RESULTS: Our study revealed a significant decrease in primitive HSCs and progenitor cells, alongside their reduced clonogenic capacity and multilineage differentiation potential. These BM defects were evident in patients with both severe and non-severe hematological manifestations, including pediatric patients, demonstrating that BM disruption can emerge silently and early on, even in patients who do not show obvious hematological symptoms. Beyond stem cells, there was a reduction in mature cell populations in the BM and peripheral blood, affecting myeloid, erythroid, and lymphoid populations. Furthermore, BM MSCs in DADA2 patients exhibited reduced clonogenic and proliferation capabilities and were more prone to undergo cellular senescence marked by elevated DNA damage. CONCLUSION: Our exploration into the BM landscape of DADA2 patients sheds light on the critical hematological dimension of the disease and emphasizes the importance of vigilant monitoring, even in the case of subclinical presentation.

19.
Br J Haematol ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279213

RESUMEN

Data on haematological features of telomere biology disorders (TBD) remain scarce. We describe haematological, extra-haematological characteristics and prognosis of 127 genetically confirmed TBD patients diagnosed after the age of 15. Ninety-three index cases and 34 affected relatives were included. At diagnosis of TBD, 76.3% of index cases had haematological features, half pulmonary features and a third liver features. At diagnosis, bone marrow failure (BMF) was present in 59 (46.5%), myelodysplastic syndrome (MDS) in 22 (17.3%) and acute myeloid leukaemia (AML) in 2 (1.6%) while 13 (10.2%) developed or worsened bone marrow involvement during follow-up. At diagnosis, compared to MDS/AML patients, BMF patients were younger (median 23.1 years vs. 43.8, p = 0.007), and had a better outcome (4-year overall survival 76.3% vs. 31.8%, p < 0.001). While frequencies and burden of cytogenetical and somatic mutations increased significantly in myeloid malignancies, some abnormalities were also observed in patients with normal blood counts and BMF, notably somatic spliceosome variants. Solid cancers developed in 8.7% patients, mainly human papillomavirus-related cancers and hepatocellular carcinomas. TBD is a multiorgan progressive disease. While BMF is the main haematological disorder, high-risk myeloid malignancies are common, and are, together with age, the only factors associated with a worse outcome.

20.
J Cell Physiol ; : e31434, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279218

RESUMEN

Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA