Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 22(1): 131, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550086

RESUMEN

BACKGROUND: Cognitive health is of great interest to society, with neuroinflammation and systemic inflammation age-related risk factors that are linked to declines in cognitive performance. Several botanical ingredients have been suggested to have benefits in this area including Salvia officinalis (sage), which has shown anti-inflammatory effects and exhibited promising cognitive improvements in multiple human studies. The current study demonstrates anti-inflammatory effects for S. officinalis across a broad set of in vitro models in human cells, and adds further evidence to support modulation of acetylcholine and monoamine neurostransmitter levels as mechanisms that contribute towards the benefits of the herb on cognitive health. METHODS: The effect of S. officinalis extract on release of multiple cytokines and chemokines was measured in human primary intestinal epithelial cells treated with or without LPS stimulation, and Blood Brain Barrier (BBB) cells in presence or absence of recombinant IL-17A and/or Human IL-17RA/IL-17R Antibody. Antioxidant effects were also assessed in BBB cells incubated with the extract and H2O2. The anti-inflammatory effects of S. officinalis extract were further assessed based on clinically-relevant biomarker readouts across 12 human primary cell-based disease models of the BioMAP Diversity PLUS panel. RESULTS: S. officinalis showed significant attenuation of the release of most cytokines/chemokines into apical media in LPS-stimulated intestinal cells, but small increases in the release of markers including IL-6, IL-8 in basolateral media; where TNF-α was the only marker to be significantly reduced. S. officinalis attenuated the release of CRP and VCAM-1 from BBB cells under IL-17A induced conditions, and also decreased H2O2 induced ROS overproduction in these cells. Phenotypic profiling with the BioMAP Diversity PLUS Panel identified additional anti-inflammatory mediators, and based on a similarity search analysis suggested potential mechanistic similarity to caffeic acid and drugs known to inhibit COMT and MAO activity to modulate monoamine metabolism. Subsequent in vitro assessment showed that S. officinalis was able to inhibit the activity of these same enzymes. CONCLUSIONS: S. officinalis extract showed anti-inflammatory effects across multiple human cell lines, which could potentially reduce peripheral inflammation and support cognitive health. S. officinalis extract also showed the ability to inhibit enzymes related to the metabolism of monoamine neurotransmitters, suggesting possible dopaminergic and serotonergic effects acting alongside proposed cholinergic effects to mediate acute cognitive performance benefits previously demonstrated for the extract.


Asunto(s)
Salvia officinalis , Antiinflamatorios/farmacología , Citocinas/metabolismo , Humanos , Peróxido de Hidrógeno , Inflamación/metabolismo , Interleucina-17/uso terapéutico , Lipopolisacáridos/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Salvia officinalis/metabolismo
2.
Front Microbiol ; 10: 1435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293558

RESUMEN

More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA