Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.969
Filtrar
1.
Biomaterials ; 312: 122744, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106820

RESUMEN

Inflammation within the central nervous system (CNS), which may be triggered by surgical trauma, has been implicated as a significant factor contributing to postoperative cognitive dysfunction (POCD). The relationship between mitigating inflammation at peripheral surgical sites and its potential to attenuate the CNS inflammatory response, thereby easing POCD symptoms, remains uncertain. Notably, carbon monoxide (CO), a gasotransmitter, exhibits pronounced anti-inflammatory effects. Herein, we have developed carbon monoxide-releasing micelles (CORMs), a nanoparticle that safely and locally liberates CO upon exposure to 650 nm light irradiation. In a POCD mouse model, treatment with CORMs activated by light (CORMs + hv) markedly reduced the concentrations of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in both the peripheral blood and the hippocampus, alongside a decrease in ionized calcium-binding adapter molecule 1 in the hippocampal CA1 region. Furthermore, CORMs + hv treatment diminished Evans blue extravasation, augmented the expression of tight junction proteins zonula occludens-1 and occludin, enhanced neurocognitive functions, and fostered fracture healing. Bioinformatics analysis and experimental validation has identified Htr1b and Trhr as potential key regulators in the neuroactive ligand-receptor interaction signaling pathway implicated in POCD. This work offers new perspectives on the mechanisms driving POCD and avenues for therapeutic intervention.


Asunto(s)
Monóxido de Carbono , Luz , Complicaciones Cognitivas Postoperatorias , Animales , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Micelas , Luz Roja
2.
Biomaterials ; 312: 122749, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121725

RESUMEN

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Barrera Hematoencefálica , Azul de Metileno , Nanomedicina , Enfermedades Neuroinflamatorias , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Apoptosis/efectos de los fármacos , Células PC12 , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas , Ratones , Nanomedicina/métodos , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL
3.
Acta Pharm Sin B ; 14(8): 3432-3456, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220871

RESUMEN

The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.

4.
Microcirculation ; : e12877, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222475

RESUMEN

The brain microvasculature, which delivers oxygen and nutrients and forms a critical barrier protecting the central nervous system via capillaries, is deleteriously affected by both Alzheimer's disease (AD) and type 2 diabetes (T2D). T2D patients have an increased risk of developing AD, suggesting potentially related microvascular pathological mechanisms. Pericytes are an ideal cell type to study for functional links between AD and T2D. These specialized capillary-enwrapping cells regulate capillary density, lumen diameter, and blood flow. Pericytes also maintain endothelial tight junctions to ensure blood-brain barrier integrity, modulation of immune cell extravasation, and clearance of toxins. Changes in these phenomena have been observed in both AD and T2D, implicating "pericyte pathology" as a common feature of AD and T2D. This review examines the mechanisms of AD and T2D from the perspective of the brain microvasculature, highlighting how pericyte pathology contributes to both diseases. Our review identifies voids in understanding how AD and T2D negatively impact the brain microvasculature and suggests future studies to examine the intersections of these diseases.

5.
Mycology ; 15(3): 345-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247889

RESUMEN

Generally, Cryptococcus initially infects the respiratory tract, but can spread, eventually crossing the blood-brain barrier (BBB) and causing meningitis or meningoencephalitis. Specifically, Cryptococcus invades the vascular endothelial cells of the BBB, from which it enters the brain. The main mechanisms through which Cryptococcus crosses the BBB are transcellular traversal, the paracellular pathway, and via Trojan horse. In this paper, the mechanisms by which Cryptococcus crosses the BBB were explained in detail. In addition to pathways of entry to the brain, this paper presents a discussion on some rare cryptococcal infections and provides some insights for future research directions.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39251878

RESUMEN

Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Encéfalo , Nanomedicina , Humanos , Animales , Sistemas de Liberación de Medicamentos , Medicina de Precisión , Nanopartículas/química , Nanopartículas/uso terapéutico , Barrera Hematoencefálica , Encefalopatías/tratamiento farmacológico
7.
J Control Release ; 375: 116-126, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236899

RESUMEN

Many chemotherapeutic and molecular targeted drugs have been used to treat brain metastases, e.g., anti-angiogenic vandetanib. However, the blood-brain barrier and brain-specific resistance mechanisms make these systemic therapeutic approaches inefficacious. Brain metastatic cancer cells could mimic neurons to upregulate multiple serpins and secrete them into the extracellular environment to reduce local plasmin production to promote L1CAM-mediated vessel co-option and resist anti-angiogenesis therapy. Here, we developed brain-tumor-seeking and serpin-inhibiting outer membrane vesicles (DE@OMVs) to traverse across the blood-brain barrier, bypass neurons, and specially enter metastatic cancer cells via targeting GRP94 and vimentin. Through specific delivery of dexamethasone and embelin, reduced serpin secretion, restored plasmin production, significant L1CAM inactivation and tumor cell apoptosis were specially found in intracranial metastatic regions, leading to delayed tumor growth and prolonged survival in mice with brain metastases. By combining the brain-tumor-seeking properties with the regulation of the serpin/plasminogen activator/plasmin/L1CAM axis, this study provides a potent and highly-selective systemic therapeutic option for brain metastases.

8.
J Cereb Blood Flow Metab ; : 271678X241281547, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246093

RESUMEN

Strokes constitute over 50% of all neurological diseases, standing as the foremost cause of physical and mental disability. Currently, there are no widely accepted gold standard treatments for ischemic strokes beyond intravenous thrombolysis and mechanical thrombectomy applied during the acute therapeutic window. Therefore, the need for novel treatments targeting crucial signaling mediators involved in ischemic stroke is of utmost importance. The sigma-1 receptor (S1R), a molecular chaperone located at mitochondria-associated endoplasmic reticulum membranes (MAM), has exhibited neuroprotective effects when modulated by synthetic and endogenous agents across various cerebrovascular diseases. In this review, we describe the emerging therapeutic role of S1R agonists and antagonists in regulating blood-brain barrier (BBB) dysfunction, neuroinflammation, and neurocognitive impairment following ischemic stroke.

9.
Front Aging Neurosci ; 16: 1444716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233828

RESUMEN

Introduction: Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods: This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results: Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion: The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.

10.
Front Behav Neurosci ; 18: 1342486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224487

RESUMEN

Objectives: This study characterizes cerebral spinal fluid (CSF) indices including total protein, the albumin quotient, IgG index and oligoclonal bands in patients followed at a single center for pediatric acute-neuropsychiatric syndrome (PANS) and other psychiatric/behavioral deteriorations. Methods: In a retrospective chart review of 471 consecutive subjects evaluated for PANS at a single center, navigational keyword search of the electronic medical record was used to identify patients who underwent lumbar puncture (LP) as part of the evaluation of a severe or atypical psychiatric deterioration. Psychiatric symptom data was ascertained from parent questionnaires and clinical psychiatric evaluations. Inclusion criteria required that subjects presented with psychiatric deterioration at the time of first clinical visit and had a lumbar puncture completed as part of their evaluation. Subjects were categorized into three subgroups based on diagnosis: PANS (acute-onset of severe obsessive compulsive disorder (OCD) and/or eating restriction plus two other neuropsychiatric symptoms), autoimmune encephalitis (AE), and "other neuropsychiatric deterioration" (subacute onset of severe OCD, eating restriction, behavioral regression, psychosis, etc; not meeting criteria for PANS or AE). Results: 71/471 (15.0 %) of patients underwent LP. At least one CSF abnormality was seen in 29% of patients with PANS, 45% of patients with "other neuropsychiatric deterioration", and 40% of patients who met criteria for autoimmune encephalitis. The most common findings included elevated CSF protein and/or albumin quotient. Elevated IgG index and IgG oligoclonal bands were rare in all three groups. Conclusion: Elevation of CSF protein and albumin quotient were found in pediatric patients undergoing LP for evaluation of severe psychiatric deteriorations (PANS, AE, and other neuropsychiatric deteriorations). Further studies are warranted to investigate blood brain barrier integrity at the onset of the neuropsychiatric deterioration and explore inflammatory mechanisms.

11.
Int J Biomed Imaging ; 2024: 4482931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224835

RESUMEN

Background: The blood-brain barrier (BBB) is part of the neurovascular unit (NVU) which plays a key role in maintaining homeostasis. However, its 3D structure is hardly known. The present study is aimed at imaging the BBB using tissue clearing and 3D imaging techniques in both human brain tissue and rat brain tissue. Methods: Both human and rat brain tissue were cleared using the CUBIC technique and imaged with either a confocal or two-photon microscope. Image stacks were reconstructed using Imaris. Results: Double staining with various antibodies targeting endothelial cells, basal membrane, pericytes of blood vessels, microglial cells, and the spatial relationship between astrocytes and blood vessels showed that endothelial cells do not evenly express CD31 and Glut1 transporter in the human brain. Astrocytes covered only a small portion of the vessels as shown by the overlap between GFAP-positive astrocytes and Collagen IV/CD31-positive endothelial cells as well as between GFAP-positive astrocytes and CD146-positive pericytes, leaving a big gap between their end feet. A similar structure was observed in the rat brain. Conclusions: The present study demonstrated the 3D structure of both the human and rat BBB, which is discrepant from the 2D one. Tissue clearing and 3D imaging are promising techniques to answer more questions about the real structure of biological specimens.

12.
Front Immunol ; 15: 1445867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253085

RESUMEN

Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.


Asunto(s)
Mastocitos , Humanos , Mastocitos/inmunología , Mastocitos/metabolismo , Animales , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/metabolismo , Encefalopatías/inmunología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Neuronas/inmunología , Neuronas/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología
13.
Front Aging Neurosci ; 16: 1353003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253614

RESUMEN

The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.

14.
J Infect Dis ; 230(Supplement_2): S87-S94, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255395

RESUMEN

Periodontitis is a common chronic inflammatory disease, affecting approximately 19% of the global adult population. A relationship between periodontal disease and Alzheimer disease has long been recognized, and recent evidence has been uncovered to link these 2 diseases mechanistically. Periodontitis is caused by dysbiosis in the subgingival plaque microbiome, with a pronounced shift in the oral microbiota from one consisting primarily of Gram-positive aerobic bacteria to one predominated by Gram-negative anaerobes, such as Porphyromonas gingivalis. A common phenomenon shared by all bacteria is the release of membrane vesicles to facilitate biomolecule delivery across long distances. In particular, the vesicles released by P gingivalis and other oral pathogens have been found to transport bacterial components across the blood-brain barrier, initiating the physiologic changes involved in Alzheimer disease. In this review, we summarize recent data that support the relationship between vesicles secreted by periodontal pathogens to Alzheimer disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Periodontitis , Porphyromonas gingivalis , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/metabolismo , Humanos , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , Disbiosis/microbiología , Infecciones Bacterianas/microbiología , Barrera Hematoencefálica/microbiología , Animales , Microbiota
15.
Redox Biol ; 76: 103342, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265498

RESUMEN

BACKGROUND: Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS: One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS: In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION: LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.

16.
Tissue Barriers ; : 2392361, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264117

RESUMEN

Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.

17.
Macromol Rapid Commun ; : e2400662, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264576

RESUMEN

Glioblastoma is one of the most aggressive and treatment-resistant forms of primary brain cancer, posing significant challenges in effective therapy. This study aimed to enhance the effectiveness of glioblastoma therapy by developing a unique nanomedicine composed of Pluronic F127-complexed PEGylated poly(glutamic acid)-cisplatin (PLG-PEG/PF127-CDDP). PLG-PEG/PF127-CDDP demonstrated an optimal size of 133.97 ± 12.60 nm, facilitating efficient cell uptake by GL261 glioma cells. In vitro studies showed significant cytotoxicity against glioma cells with a half-maximal (50%) inhibitory concentration (IC50) of 12.61 µg mL-1 at 48 h and a 72.53% ± 1.89% reduction in cell invasion. Furthermore, PLG-PEG/PF127-CDDP prolonged the circulation half-life of cisplatin to 9.75 h in vivo, leading to a more than 50% reduction in tumor size on day 16 post-treatment initiation in a murine model of glioma. The treatment significantly elevated lactate levels in GL261 cells, indicating enhanced metabolic disruption. Therefore, PLG-PEG/PF127-CDDP offers a promising approach for glioblastoma therapy due to its effects on improving drug delivery efficiency, therapeutic outcomes, and safety while minimizing systemic side effects. This work underscores the potential of polymer-based nanomedicines in overcoming the challenges of treating brain tumors, paving the way for future clinical applications.

18.
Sci Rep ; 14(1): 21236, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261565

RESUMEN

Ulinastatin, a broad-spectrum inflammatory inhibitor widely employed in the management of severe pancreatitis and sepsis, has not been extensively investigated for its therapeutic potential in bacterial meningitis. This study aims to assess the neuroprotective effects of ulinastatin on bacterial meningitis and elucidate its underlying mechanism. The rat model of bacterial meningitis was established by intracerebral injection of Escherichia coli. 3-week-old SD rats were randomly divided into 5 groups with 8 rats in each group, including control group, E.coli group, E.coli + UTI group (ulinastatin 50000IU/kg), E.coli + UTI + PMA group (ulinastatin 50000IU/kg + PMA 200 ug/kg), and E.coli + PMA group(PMA 200 ug/kg). Behavioral changes were assessed by Loeffler neurobehavioral score. Histomorphologic changes and apoptosis were assessed by hematoxylin and eosin staining, Nissl staining and TUNEL staining. Immunohistochemistry and immunofluorescence and western blotting were used to detect the expression levels of zonula occludens-1 (ZO-1) and phosphorylation protein kinase C (PKCα).It was found that ulinastatin treatment in Escherichia coli meningitis rats improved neurological function, alleviated meningeal inflammatory infiltration, reduced neuronal death, promoted the integrity of the blood-brain barrier structure. Moreover, phorbol myristate acetate (PMA, a protein kinase C activator), blocked the effective action of ulinastatin. These findings suggest that ulinastatin had neuroprotective effects on bacterial meningitis by inhibiting PKCα phosphorylation and reducing ZO-1 degradation, demonstrating that ulinastatin may be a promising strategy in the treatment of bacterial meningitis.


Asunto(s)
Glicoproteínas , Fármacos Neuroprotectores , Proteína Quinasa C-alfa , Proteína de la Zonula Occludens-1 , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Glicoproteínas/farmacología , Meningitis por Escherichia coli/tratamiento farmacológico , Meningitis por Escherichia coli/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Ratas Sprague-Dawley , Proteína de la Zonula Occludens-1/metabolismo
19.
ACS Chem Neurosci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268711

RESUMEN

Cerebral blood flow and blood-brain barrier permeability assessment are crucial hemodynamic parameters to measure under neurological conditions. In conjunction with positron emission tomography (PET), oxygen-15-labeled water has emerged as a gold standard for measuring cerebral perfusion; however, at higher flow rates, [15O]water extraction becomes nonlinear. In such a scenario, freely diffusible [11C]butanol can provide a truer estimate. Radiosyntheses of [11C]butanol reported to date are protracted, are not automated, or require ethanol in the final formulation. By using a flow-based, captive solvent approach on a commercially available radiosynthesizer, we automated and reduced the synthesis time to 28 min. Forgoing cartridge-based purification for an aqueous high-performance liquid chromatography method, we obtained high purity [11C]butanol in ethanol-free phosphate buffered saline in sufficient yields for clinical PET studies. We here report our expedited, automated, and ethanol-free radiosynthesis of [11C]butanol along with preliminary imaging of a porcine subject.

20.
Diagnostics (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39272679

RESUMEN

Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood-brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA