Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(2): e202312119, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37996999

RESUMEN

The kinetics of heterogeneous polymerization is determined directly using small-angle X-ray scattering (SAXS). This important advancement is exemplified for the synthesis of sterically-stabilized diblock copolymer nanoparticles by reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) in mineral oil at 90 °C. The principle of mass balance is invoked to derive a series of equations for the analysis of the resulting time-resolved SAXS patterns. Importantly, there is a continuous change in the X-ray scattering length density for the various components within the reaction mixture. This enables the volume fraction of unreacted BzMA monomer to be calculated at any given time point, which enables the polymerization kinetics to be monitored in situ directly without relying on supplementary characterization techniques. Moreover, SAXS enables the local concentration of both monomer and solvent within the growing swollen nanoparticles to be determined during the polymerization. Data analysis reveals that the instantaneous rate of BzMA polymerization is proportional to the local monomer concentration within the nanoparticles. In principle, this powerful new time-resolved SAXS approach can be applicable to other heterogeneous polymerization formulations.

2.
Angew Chem Int Ed Engl ; 62(38): e202309526, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37522648

RESUMEN

Hydrolytically degradable block copolymer nanoparticles are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous media. This efficient protocol involves the reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethylacrylamide (DMAC) using a monofunctional or bifunctional trithiocarbonate-capped poly(ϵ-caprolactone) (PCL) precursor. DMAC monomer is employed as a co-solvent to solubilize the hydrophobic PCL chains. At an intermediate DMAC conversion of 20-60 %, the reaction mixture is diluted with water to 10-25 % w/w solids. The growing amphiphilic block copolymer chains undergo nucleation to form sterically-stabilized PCL-core nanoparticles with PDMAC coronas. 1 H NMR studies confirm more than 99 % DMAC conversion while gel permeation chromatography (GPC) studies indicate well-controlled RAFT polymerizations (Mw /Mn ≤1.30). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicate spheres of 20-120 nm diameter. As expected, hydrolytic degradation occurs within days at 37 °C in either acidic or alkaline solution. Degradation is also observed in phosphate-buffered saline (PBS) (pH 7.4) at 37 °C. However, no degradation is detected over a three-month period when these nanoparticles are stored at 20 °C in deionized water (pH 6.7). Finally, PDMAC30 -PCL16 -PDMAC30 nanoparticles are briefly evaluated as a dispersant for an agrochemical formulation based on a broad-spectrum fungicide (azoxystrobin).

3.
Macromol Rapid Commun ; 42(18): e2100201, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34145660

RESUMEN

Poly(N-isopropylacrylamide) (PNIPAM) is an important thermo-responsive polymer that finds applications in many areas. However, the preparation of PNIPAM-based block copolymer nanoparticles with higher-order morphologies at high solids is challenging. Herein, aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) of N-isopropylacrylamide (NIPAM) using an asymmetrical cross-linker is developed for one-step preparation of PNIPAM-based block copolymer nanoparticles with various morphologies (spheres, worms, and vesicles). It is demonstrated that reaction temperature has a great effect on both polymerization kinetics and morphologies of block copolymer nanoparticles. Reversible addition-fragmentation chain transfer (RAFT) reactive groups embedded inside the PNIPAM core provide a landscape for further functionalization. PNIPAM-based block copolymer nanoparticles with different surface properties are prepared by seeded photo-PISA at room temperature. Finally, these block copolymer nanoparticles are also used as additives to tune mechanical properties of hydrogels via covalent cross-linking.


Asunto(s)
Metacrilatos , Nanopartículas , Acrilamidas , Resinas Acrílicas , Polimerizacion , Polímeros
4.
ACS Appl Mater Interfaces ; 11(36): 33364-33369, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430432

RESUMEN

Core cross-linked poly(stearyl methacrylate)-poly(benzyl methacrylate)-poly(ethylene glycol dimethacrylate) [S31-B200-E20] triblock copolymer nanoparticles were synthesized directly in an industrial mineral oil via polymerization-induced self-assembly (PISA). Gel permeation chromatography analysis of the S31-B200 diblock copolymer precursor chains indicated a well-controlled reversible addition-fragmentation chain transfer dispersion polymerization, while transmission electron microscopy, dynamic light-scattering (DLS), and small-angle X-ray scattering studies indicated the formation of well-defined spheres. Moreover, DLS studies performed in THF, which is a common solvent for the S and B blocks, confirmed successful covalent stabilization because well-defined solvent-swollen spheres were obtained under such conditions. Tribology experiments using a mini-traction machine (MTM) indicated that 0.50% w/w dispersions of S31-B200-E20 spheres dramatically reduce the friction coefficient of base oil within the boundary lubrication regime. Given their efficient and straightforward PISA synthesis at high solids, such nanoparticles offer new opportunities for the formulation of next-generation ultralow-viscosity automotive engine oils.

5.
ACS Sens ; 3(12): 2526-2531, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30468073

RESUMEN

We develop a novel amplified split aptamer sensor for highly sensitive detection and imaging of small molecules in living cells by using cationic block copolymer nanoparticles (BCNs) with entrapped fluorescent conjugated polymer as a delivery agent. The design of a split aptamer as the initiator of hybridization chain reaction (HCR) affords the possibility of enhancing the signal-to-background ratio and thus allows high-contrast imaging for small molecules with relatively weak interactions with their aptamers. The novel design of using fluorescent cationic BCNs as the nanocarrier enables efficient and self-tracking transfection of DNA probes. Results reveal that BCNs exhibit high fluorescence brightness allowing direct tracking of the delivery location. The developed amplified split aptamer sensor is shown to have high sensitivity and selectivity for in vitro quantitative detection of adenosine triphosphate (ATP) with a detection limit of 30 nM. Live cell studies show that the sensor provides a "signal on" approach for specific, high-contrast imaging of ATP. The DNA sensor based HCR system may provide a new generally applicable platform for detection and imaging of low-abundance biomarkers.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Nanopartículas/química , Polietilenglicoles/química , Polivinilos/química , Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/genética , Biomarcadores/análisis , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Fluorenos/química , Fluorenos/toxicidad , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Límite de Detección , Microscopía Fluorescente/métodos , Nanopartículas/toxicidad , Hibridación de Ácido Nucleico , Polietilenglicoles/toxicidad , Polivinilos/toxicidad
6.
Int J Pharm ; 531(1): 134-142, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28802793

RESUMEN

Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.


Asunto(s)
Portadores de Fármacos/química , Emulsiones/química , Absorción Cutánea , Animales , Glicoles de Etileno , Lactatos , Micelas , Poliésteres , Polietilenglicoles , Porcinos
7.
Macromol Biosci ; 14(5): 709-19, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24469965

RESUMEN

The development of novel xyloglucan-block-poly(ϵ-caprolactone) (XGO-b-PCL) nanoparticles coated with the mucoadhesive polysaccharide chitosan is described. XGO-b-PCL nanoparticles show monodisperse size distribution (Rh = 50 nm). Curcumin is successfully encapsulated within the PCL core within drug to polymer ratio of 1:5 (w/w). The coating of nanoparticles with chitosan results in an increased particle size and positive surface charge due to the polycation nature of the chitosan. Mucoadhesive properties of chitosan-coated nanoparticles are demonstrated by its exceptional ability to interact with mucin through electrostatic forces. Finally, in vitro studies show that curcumin-loaded nanoparticles exhibit higher cytotoxic effects against B16F10 melanoma cells than L929 fibroblast cells.


Asunto(s)
Adhesivos/química , Materiales Biocompatibles/síntesis química , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Glucanos/química , Nanopartículas/química , Poliésteres/química , Xilanos/química , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Curcumina/administración & dosificación , Curcumina/química , Curcumina/farmacología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Modelos Moleculares , Estructura Molecular , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA