Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(25): 30935-30943, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37319383

RESUMEN

Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.

2.
Molecules ; 27(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458773

RESUMEN

A series of novel 1,4-dihydrobenzo[1,2,4][e]triazines bearing an acetyl or ester moiety as a functional group at the C(3) atom of the 1,2,4-triazine ring were synthesized. The synthetic protocol is based on an oxidative cyclization of functionally substituted amidrazones in the presence of DBU and Pd/C. It was found that the developed approach is suitable for the preparation of 1,4-dihydrobenzo[e][1,2,4]triazines, but the corresponding Blatter radicals were isolated only in few cases. In addition, a previously unknown dihydrobenzo[e][1,2,4]triazolo[3,4-c][1,2,4]triazine tricyclic open-shell derivative was prepared. Studies of thermal behavior of the synthesized 1,4-dihydrobenzo[1,2,4][e]triazines revealed their high thermal stability (up to 240-250 °C), which enables their application potential as components of functional organic materials.


Asunto(s)
Triazinas , Ciclización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA