Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSystems ; 3(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320219

RESUMEN

Mobile genetic elements such as conjugative plasmids are responsible for antibiotic resistance phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics, and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. a "race to the bottom") was a more significant factor than the antibiotic concentration (lethal vs sublethal) in determining plasmid prevalence. Interestingly, plasmid loss was also prevented by protozoan predation. These results show that outcomes of attempts to resensitize bacterial communities by disrupting the conjugation network are highly dependent on ecological factors and resistance mechanisms. IMPORTANCE Bacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost.

2.
Proc Natl Acad Sci U S A ; 111(50): 17941-6, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453102

RESUMEN

Microbes produce many compounds that are costly to a focal cell but promote the survival and reproduction of neighboring cells. This observation has led to the suggestion that microbial strains and species will commonly cooperate by exchanging compounds. Here, we examine this idea with an ecoevolutionary model where microbes make multiple secretions, which can be exchanged among genotypes. We show that cooperation between genotypes only evolves under specific demographic regimes characterized by intermediate genetic mixing. The key constraint on cooperative exchanges is a loss of autonomy: strains become reliant on complementary genotypes that may not be reliably encountered. Moreover, the form of cooperation that we observe arises through mutual exploitation that is related to cheating and "Black Queen" evolution for a single secretion. A major corollary is that the evolution of cooperative exchanges reduces community productivity relative to an autonomous strain that makes everything it needs. This prediction finds support in recent work from synthetic communities. Overall, our work suggests that natural selection will often limit cooperative exchanges in microbial communities and that, when exchanges do occur, they can be an inefficient solution to group living.


Asunto(s)
Evolución Biológica , Ecosistema , Interacciones Microbianas/fisiología , Modelos Biológicos , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA