Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275464

RESUMEN

This study focused on developing an advanced bitterness sensor designed to minimize interference from common anions such as nitrate (NO3-) and iodide (I-) by incorporating partially dissociated amine compounds into the sensor membrane. The conventional bitter sensor (C00) uses fully dissociated quaternary ammonium salt tetradecyl ammonium bromide (TDAB), which typically exhibits high responses to these anions, leading to inaccurate bitterness assessments. To address this issue, we explored the use of three partially dissociated amines-oleylamine (OAm), dioctadecylamine (DODA), and tridodecylamine (TDA)-as lipids in the membrane components. We fabricated sensor membranes and tested their ion selectivity, interference resistance to anion, and sensitivity to iso-alpha acids (IAAs), representative bitter compounds in beer. The results showed that the membranes with partially dissociated amines significantly reduced anion interference. Notably, the sensitivity of the TDA membrane to IAAs was 80.4 mV/dec in concentration, exceeding the 68.5 mV/dec of the TDAB membrane. This enhanced sensitivity, coupled with reduced anion interference, reveals a novel property of partially dissociated lipids in taste sensors, distinguishing them from fully dissociated lipids. These findings pave the way for the development of sensors that can accurately assess a bitter taste and have potential applications in the food and beverage industry.

2.
Plants (Basel) ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273946

RESUMEN

Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.

3.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3784-3795, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099352

RESUMEN

Based on high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS~E) and molecular docking technique, bitter compounds of Ginkgo biloba extract(GBE) were characterized, and their relationship with bitter efficacy was investigated. Firstly, UPLC-Q-TOF-MS~E was used for qualitative analysis of GBE components, and 60 chemical components were identified. These chemical components were molecular-docked with bitter receptors, and 26 bitter substances were selected, mainly flavonoids. Secondly, sensory and electronic tongue bitterness evaluation techniques were used to verify that total flavones of GBE were the main bitter substances, which was consistent with the molecular docking results. Finally, network pharmacology was used to predict and analyze bitter substances. The relationship between the target of bitter substance and bitter effect was explored. The key targets of bitter substances are CYP2B6, ALOX15, and PTGS2, etc., and bitter substances may exert a bitter efficacy by ac-ting on related disease targets, indicating that bitter substances of GBE are the material basis of the bitter effect. In summary, the study indicated that the molecular docking technique had a guiding effect on the screening of bitter substances in traditianal Chinese medicine(TCM), and bitter substances of GBE had a bitter efficacy. It provides ideas and references for the study of the "taste-efficacy relationship" of TCM in the future.


Asunto(s)
Ginkgo biloba , Simulación del Acoplamiento Molecular , Extractos Vegetales , Espectrometría de Masas en Tándem , Gusto , Ginkgo biloba/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Masculino , Extracto de Ginkgo
4.
Food Res Int ; 193: 114857, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160053

RESUMEN

Theacrine, a purine alkaloid derived from Camellia assamica var. kucha, has a distinct bitter taste. Our previous study found the lower recognition threshold of theacrine at 25 °C than 45 °C. This study aims to investigate the bitterness characterizations of theacrine at aforementioned temperatures and its taste perception mechanism. Sensory analysis exhibited higher bitterness intensity for theacrine at 25 °C than 45 °C. Subsequently, flow cytometry was performed to verify the above characterization at the cellular level. It revealed that theacrine could activated the bitter receptor hTAS2R14 and the calcium signal at 25 °C was higher than 45 °C. Ultimately, the interaction mechanism was studied by molecular dynamics simulations, indicating that the conformation of theacrine-hTAS2R14 had a higher binding capacity and better stability at 25 °C. Overall, temperature affected the binding of theacrine to the bitter receptor hTAS2R14, resulting in the stronger bitterness intensity of theacrine at 25 °C than 45 °C.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Temperatura , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Percepción del Gusto , Camellia/química , Células HEK293 , Masculino , Ácido Úrico/análogos & derivados
5.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123846

RESUMEN

In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor's predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed.


Asunto(s)
Técnicas Biosensibles , Gusto , Humanos , Gusto/fisiología , Gusto/efectos de los fármacos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Receptores Acoplados a Proteínas G/metabolismo , Preparaciones Farmacéuticas/análisis
6.
Biosens Bioelectron ; 264: 116679, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167889

RESUMEN

Various organisms produce several products to defend themselves from the environment and enemies. These natural products have pharmacological and biological activities and are used for therapeutic purposes, retaining bitter taste because of chemical defense mechanisms. Cnicin is a plant-derived bitter sesquiterpene lactone with pharmacological characteristics such as anti-bacterial, anti-myeloma, anti-cancer, anti-tumor, anti-oxidant, anti-inflammatory, allelopathic, and cytotoxic properties. Although many studies have focused on cnicin detection, they have limitations and novel cnicin-detecting strategies are required. In this study, we developed the bioelectronics for screening cnicin using its distinct taste. hTAS2R46 was produced using an Escherichia coli expression system and reconstituted into nanodiscs (NDs). The binding sites and energy between hTAS2R46 and cnicin were investigated using biosimulations. hTAS2R46-NDs were combined with a side-gated graphene micropatterned field-effect transistor (SGMFET) to construct hTAS2R46-NDs bioelectronics. The construction was examined by chemical and electrical characterization. The developed system exhibited unprecedented performance, 10 fM limit of detection, rapid response time (within 10 s), 0.1354 pM-1 equilibrium constant, and high selectivity. Furthermore, the system was stable as the sensing performance was maintained for 15 days. Therefore, the hTAS2R46-NDs bioelectronics can be utilized to screen cnicin from natural products and applied in the food and drug industries.


Asunto(s)
Técnicas Biosensibles , Receptores Acoplados a Proteínas G , Humanos , Técnicas Biosensibles/métodos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Gusto , Nanoestructuras/química , Sesquiterpenos/análisis , Sesquiterpenos/química , Transistores Electrónicos , Escherichia coli , Fitoquímicos/química , Fitoquímicos/farmacología
7.
Front Chem ; 12: 1449536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206439

RESUMEN

Objective: The aim of the present study was to carry out a systematic research on bitterness quantification to provide a reference for scholars and pharmaceutical developers to carry out drug taste masking research. Significance: The bitterness of medications poses a significant concern for clinicians and patients. Scientifically measuring the intensity of drug bitterness is pivotal for enhancing drug palatability and broadening their clinical utility. Methods: The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to summarize the features, strengths, and applicability of quantitative bitterness assessment methods. Results: In our research, we systematically outlined the classification and key advancements in quantitative research methods for assessing drug bitterness, including in vivo quantification techniques such as traditional human taste panel methods, as well as in vitro quantification methods such as electronic tongue analysis. It focused on the quantitative methods and difficulties of bitterness of natural drugs with complex system characteristics and their difficulties in quantification, and proposes possible future research directions. Conclusion: The quantitative methods of bitterness were summarized, which laid an important foundation for the construction of a comprehensive bitterness quantification standard system and the formulation of accurate, efficient and rich taste masking strategies.

8.
Food Chem ; 460(Pt 2): 140609, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094345

RESUMEN

To comprehensively explore the contribution and mechanisms of identified low-threshold bitter substances in Idesia polycarpa var. vestita Diels (I. vestita) fruit, we performed quantification and elucidated their interactions with main bitter taste receptors through molecular docking. The established method for quantifying bitter compounds in I. vestita fruit was validated, yielding satisfactory parameters for linearity, stability, and accuracy. Idescarpin (17.71-101.05 mg/g) and idesin (7.88-77.14 mg/g) were the predominant bitter compounds in terms of content. Taste activity values (TAVs) exceeded 10 for the bitter substances, affirming their pivotal role as major contributors to overall bitterness of I. vestita fruit. Notably, idescarpin with the highest TAV, played a crucial role in generating the bitterness of I. vestita fruit. Hydrogen bonds and hydrophobic interactions were the main driving forces. This study holds potential implications for industrial development of I. vestita fruit by providing novel insights into the mechanism underlying its bitterness formation.


Asunto(s)
Frutas , Gusto , Frutas/química , Humanos , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
9.
Food Sci Nutr ; 12(7): 4723-4734, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055222

RESUMEN

This study aimed to stabilize and mask the bitterness of peptides obtained from the enzymatic hydrolysis of coconut-meal protein with maltodextrin (MD) and maltodextrin-pectin (MD-P) as carriers via spray-drying. Essential (~35%), hydrophobic (~32%), antioxidant (~15%), and bitter (~45%) amino acids comprised a significant fraction of the peptide composition (with a degree of hydrolysis of 33%). The results indicated that the peptide's production efficiency, physical and functional properties, and hygroscopicity improved after spray-drying. Morphological features of free peptides (fragile and porous structures), spray-dried with MD (wrinkled with indented structures), and MD-P combination (relatively spherical particles with smooth surfaces) were influenced by the process type and feed composition. Adding free and microencapsulated peptides to the bread formula (2% W/W) caused changes in moisture content (35%-43%), water activity (0.89-0.94), textural properties (1-1.6 N), specific volume (5.5-6 cm3/g), porosity (18%-27%), and color indices of the fortified product. MD-P encapsulated peptides in bread fortification resulted in thermal stability and increased antioxidant activity (DPPH and ABTS+ radical scavenging: 4.5%-39.4% and 31.6%-46.8%, respectively). MD-P (as a carrier) could maintain sensory characteristics and mask the bitterness of peptides in the fortified bread. The results of this research can be used to produce functional food and diet formulations.

10.
Foods ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998581

RESUMEN

Oat-based milk alternatives (OMAs) are an important alternative to bovine milk, with prevalence of lactose intolerance, as well as soy and nut allergies limiting consumers options. However, OMAs are typically lower in protein content than both bovine milk and soy-based alternatives, with protein quality limited by low lysine levels, which can reduce protein digestibility. Addition of alternative plant proteins may increase the quantity of protein, as well as balancing the amino acid profile. However, plant-based proteins have additional sensory qualities and off-flavours, which may lead to undesirable characteristics when introduced to OMAs. This study aimed to assess the effect of pea and potato protein addition on the sensory profile, volatile profile, colour, and particle size in an OMA control product. Results demonstrated that pea protein contributed to a bitter and metallic taste, astringent aftertaste, and a significantly increased overall aroma correlated with higher levels of key volatiles. Whilst potato protein resulted in less flavour changes, it did lead to increased powdery mouthfeel and mouthcoating supported by a substantially increased particle size. Both protein fortifications led to detectable colour changes and a staler flavour. Fortification of OMA product with the pea protein led to significant sensory, volatile and physical changes, whilst the potato protein led to predominantly physical changes. Further investigation into alternative plant-based proteins is necessary to optimise sensory qualities whilst increasing protein content and the amino acid profile.

11.
J Sci Food Agric ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979943

RESUMEN

BACKGROUND: Lettuce holds a prominent position in the year-round supply of vegetables, offering a rich array of health-beneficial substances, such as dietary fiber, phenolic compounds, lactucopicrin and lactucin. As such, its flavor has garnered increasing attention. Balancing the enhancement of beneficial compounds with the reduction of undesirable taste is a key focus of scientific research. To investigate short-term management to improve the nutritional quality and flavor of lettuce, combinations of different light intensities (200, 500 and 800 µm ol m-2 s-1) and temperatures (10 and 22 °C) were applied separately to 'Lollo Rosso' and 'Little Butter Lettuce' for 7 days before harvest. RESULTS: The results obtained showed that increasing light intensity at low temperatures decreased nitrate content and increased soluble sugar, soluble protein, anthocyanin and phenolic compound content. In the case of lettuce flavor, the bitterness-related metabolites such as lactucin and lactucopicrin were reduced with high light intensity at a low temperature of 10 °C. With this combination, the fructose and glucose contents increased, significantly improving lettuce flavor. CONCLUSION: Higher light intensity combined with low temperature for 7 days before harvest effectively improved the nutritional quality and flavor of lettuce, suggesting its great potential for use in horticultural practices. © 2024 Society of Chemical Industry.

12.
Clin Nutr ESPEN ; 63: 311-321, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964656

RESUMEN

BACKGROUND AND AIMS: To investigate associations between Single Nucleotide Polymorphisms (SNPs) in the TAS1R and TAS2R taste receptors and diet quality, intake of alcohol, added sugar, and fat, using linear regression and machine learning techniques in a highly admixed population. METHODS: In the ISA-Capital health survey, 901 individuals were interviewed and had socioeconomic, demographic, health characteristics, along with dietary information obtained through two 24-h recalls. Data on 12 components related to food groups, nutrients, and calories was combined into a diet quality score (BHEI-R). BHEI-R, SoFAAs (calories from added sugar, saturated fat, and alcohol) and Alcohol use were tested for associations with 255 TAS2R SNPs and 73 TAS1R SNPs for 637 individuals with regression analysis and Random Forest. Significant SNPs were combined into Genetic taste scores (GTSs). RESULTS: Among 23 SNPs significantly associated either by stepwise linear/logistic regression or random forest with any possible biological functionality, the missense variants rs149217752 in TAS2R40, for SoFAAs, and rs2233997 in TAS2R4, were associated with both BHEI-R (under 4% increase in Mean Squared Error) and SoFAAs. GTSs increased the variance explanation of quantitative phenotypes and there was a moderately high AUC for alcohol use. CONCLUSIONS: The study provides insights into the genetic basis of human taste perception through the identification of missense variants in the TAS2R gene family. These findings may contribute to future strategies in precision nutrition aimed at improving food quality by reducing added sugar, saturated fat, and alcohol intake.

13.
Food Chem ; 460(Pt 1): 140491, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047483

RESUMEN

The effect of the released amount and bitterness threshold of bitter peptides on the sensory properties of different wheat gluten hydrolysates (WGHs) after hydrolysis was investigated. The results showed that the endo-activity of the enzyme promoted the release of bitter peptides, leading to enhanced bitterness intensity in WGHs. With the increase in degree of hydrolysis (DH), the bitter threshold of bitter peptides became the main reason affecting bitterness of the WGHs. Proteax exerted the strong exo-activity at the DH of 20%, which could reduce bitterness of Pro-16 hydrolysates. The reason for debittering was the reduction in the content with molecular weights (MWs) of 500-1000 Da and the decrease of surface hydrophobicity (SH) in the Pro-20 M hydrolysates, which led to the increase of the bitterness threshold of bitter peptide. Meanwhile, HPLC-MS/MS analysis demonstrated the reduced proportion of C-terminal hydrophobic amino acids (HAAs) in Pro-20 M extracts verifying the cause of debittering.


Asunto(s)
Glútenes , Péptidos , Gusto , Triticum , Glútenes/química , Hidrólisis , Triticum/química , Péptidos/química , Péptidos/aislamiento & purificación , Humanos , Espectrometría de Masas en Tándem , Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Biocatálisis
14.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38931389

RESUMEN

The function of the sense of taste is usually confined to the ability to perceive the flavor of food to assess and use the nutrients necessary for healthy survival and to discard those that may be harmful, toxic, or unpleasant. It is almost unanimously agreed that the perception of bitter taste prevents the consumption of toxins from plants, decaying foods, and drugs. Forty years ago, while practicing medicine in a rural area of the Colombian Amazon, I had an unexpected encounter with the Inga Indians. I faced the challenge of accepting that their traditional medicine was effective and that the medicinal plants they used had a real therapeutic effect. Wanting to follow a process of learning about medicinal plants on their terms, I found that, for them, the taste of plants is a primary and fundamental key to understanding their functioning. One of the most exciting results was discovering the therapeutic value of bitter plants. The present review aims to understand whether there is any scientific support for this hypothesis from the traditional world. Can the taste of plants explain their possible therapeutic benefit? In the last 20 years, we have made novel advances in the knowledge of the physiology of taste. Our purpose will be to explore these scientific advances to determine if the bitter taste of medicinal plants benefits human health.

15.
Food Chem ; 456: 139859, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870800

RESUMEN

κ-Carrageenan (CG) was employed to mask the bitterness induced by 50% KCl in surimi gels to achieve salt reduction and gel performance improvement. The combination of KCl and CG (KCl + CG) yielded the increased textural characteristics and water-holding capacity (WHC) of surimi gels and facilitated the transition of free water to immobilized water. In addition, the KCl + CG supplement increased the turbidity and particle size of myofibrillar protein (MP) sols but decreased the surface hydrophobicity in a dose-dependent manner. The hydrophobic interactions and disulfide bonds played crucial roles in maintaining the stability of MP gels. The specific binding of potassium ions to the sulfate groups of CG limited the release and diffusion of potassium ions from the surimi gels during oral processing, effectively masking the bitterness perception and maintaining the saltiness perception. This study provides a promising strategy to reduce the utilization of sodium salt in surimi products.


Asunto(s)
Carragenina , Productos Pesqueros , Geles , Cloruro de Potasio , Gusto , Carragenina/química , Humanos , Geles/química , Cloruro de Potasio/química , Productos Pesqueros/análisis , Animales , Percepción del Gusto , Interacciones Hidrofóbicas e Hidrofílicas , Adulto , Masculino , Femenino
16.
Food Res Int ; 190: 114596, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945612

RESUMEN

Yeast extracts (YEs) are used in foods because of their flavour properties and ability to reduce bitterness. The adenosine 5'-monophosphate (AMP) found in YEs is known to decrease the bitterness of some compounds. This study aimed to investigate the ability of YEs to inhibit bitter taste receptors (TAS2Rs) using in vitro cell-based assays. A screen of TAS2Rs activated by AMP and YEs revealed that AMP and the AMP-rich YE activated more TAS2Rs. The inhibitory effect of the AMP-rich YE on seven TAS2Rs activated by bitter agonists was studied. YE reduced TAS2R activation, increased the EC50 value and decreased the maximum amplitude, demonstrating competitive and non-competitive inhibitions. Amongst the nineteen TAS2Rs tested, seven showed 40 % or greater inhibition after treatment of AMP-rich YE. Our data provide a better understanding of the TAS2R inhibition mechanism of AMP-rich YEs and promote their use as a strategy to reduce bitterness in foods and medicines.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Células HEK293 , Levaduras/metabolismo
17.
J Sci Food Agric ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847461

RESUMEN

BACKGROUND: Citrus products often suffer from delayed bitterness, which is generated from the conversion of non-bitter precursors (limonoate A-ring lactone, LARL) to limonin under the catalysis of limonin D-ring lactone hydrolase (LDLH). In this study, LDLH was isolated and purified from sweet orange seeds, and a rapid and accurate high-performance liquid chromatography method to quantify LARL was developed and applied to analyze the activity and enzymatic properties of purified LDLH. RESULTS: Purified LDLH (25.22 U mg-1) showed bands of 245 kDa and 17.5 kDa molecular weights in native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE analysis respectively. After a 24 h incubation under strongly acidic (pH 3) or strongly alkaline (pH 9) conditions, LDLH still retained approximately 100% activity. Moreover, LDLH activity was not impaired by thermal treatment at 50 °C for 120 min. Enzyme inhibition assays showed that LDLH was inactivated only after ethylenediaminetetraacetic acid treatment, and other enzyme inhibitors showed no significant effect on its activity. In addition, the LDLH activity of calcium ion (Ca2+) intervention was 108% of that in the blank group, and that of zinc ion (Zn2+) intervention was 71%. CONCLUSION: LDLH purified in this study was a multimer containing 17.5 kDa monomer with a wide pH tolerance range (pH 3-9) and excellent thermal stability. Moreover, LDLH might be a metallopeptidase, and its activity was stimulated by Ca2+ and significantly inhibited by Zn2+. These findings improve our understanding of LDLH and provide some important implications for reducing the bitterness in citrus products in the future. © 2024 Society of Chemical Industry.

18.
Food Sci Nutr ; 12(6): 4063-4075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873484

RESUMEN

Consumer acceptability of beers is influenced by product formulation and processing conditions, which impart unique sensory profiles. This study used multivariate techniques to evaluate at-home consumer sensory acceptability of six commercial beers considering their style, fermentation type, and chemical composition. Samples included top-fermented beers (American India Pale Ale and Stout) and bottom-fermented beers (Pilsner, zero-alcohol Pilsner, Vienna Lager, and Munich Dunkel). Beer consumers (n = 50) conducted sensory hedonic, check-all-that-apply (CATA) and just-about-right (JAR) tests. Chemometric variables included iso-alpha-acids, hordenine, and volatile aromatic compounds, quantified by chromatographic methods, whereas bitterness units (IBU) were determined spectrophotometrically. Lager beers had higher acceptability than top-fermented beer (p < .05) for all attributes. Light-colored beers and medium-height foams had the highest liking scores for visual sensory attributes. Higher concentrations of bitter-tasting molecules, hordenine, and acidity decreased the liking scores of top-fermented (Ale) beers, as a sensory penalty analysis suggested. In contrast, the most favored beers (Pilsners and Munich Dunkel) contained higher fusel alcohol esters linked to fruity aromatic notes. Although a low conversion rate of fatty acids into fruity esters was noted in nonalcoholic Pilsner, its overall liking score was not statistically different from the alcoholic version. However, consumers perceived the nonalcoholic Pilsner as less bitter than its alcoholic counterpart even when IBUs were nonsignificantly different. This study emphasized the significance of understanding beer chemometrics to comprehend consumer acceptability, highlighting the crucial role of bitter molecules. Hence, hordenine, acidity, and volatile contents provided additional and valuable insights into consumer preferences.

19.
Food Res Int ; 189: 114534, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876604

RESUMEN

In order to identify the peptides responsible for bitter defects and to understand the mechanism of bitterness in dry-cured ham, the peptides were identified by LC-MS/MS, and the interaction between bitter peptides and receptor proteins were evaluated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of bitter peptides was investigated using the model of HEK-293T cells by calcium imaging and transcriptomics analysis. The results of LC-MS/MS showed that 11 peptides were identified from the high bitterness fraction of defective ham; peptides PKAPPAK, VTDTTR and YIIEK derived from titin showed the highest bitterness values compared with other peptides. The results of molecular docking showed that lower CDOCKER energy was observed in the interaction between these peptides and hT2R16 in comparison with these receptors of hT2R1, hT2R4, hT2R5, hT2R8 and hT2R14, and the interaction of hT2R16 and peptides was stabilized by hydrophobic interaction and hydrogen bond. The average RMSF values of VTDTTR were higher than that of YIIEK and PKAPPAK, while EC50 values of VTDTTR were lower compared with PKAPPAK and YIIEK. Transcriptomics analysis showed that 529 differentially expressed genes were identified in HEK-293T cells during the stimulating by VTDTTR and were mainly enriched into neuroactive ligand-receptor interaction, MAPK pathway, cAMP pathway and calcium signaling pathway, which were mainly responsible for the bitter signal transduction of VTDTTR. These results could provide evidence for understanding the bitter defects of dry-cured ham and the taste mechanism of bitter peptide.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos , Gusto , Humanos , Células HEK293 , Péptidos/química , Péptidos/genética , Animales , Porcinos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Espectrometría de Masas en Tándem , Perfilación de la Expresión Génica , Transcriptoma , Transducción de Señal , Carne de Cerdo/análisis , Simulación de Dinámica Molecular , Cromatografía Liquida
20.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712219

RESUMEN

The bitter taste of medicines hinders patient compliance, but not everyone experiences these difficulties because people worldwide differ in their bitterness perception. To better understand how people from diverse ancestries perceive medicines and taste modifiers, 338 adults, European and recent US and Canada immigrants from Asia, South Asia, and Africa, rated the bitterness intensity of taste solutions on a 100-point generalized visual analog scale and provided a saliva sample for genotyping. The taste solutions were five medicines, tenofovir alafenamide (TAF), moxifloxacin, praziquantel, amodiaquine, and propylthiouracil (PROP), and four other solutions, TAF mixed with sucralose (sweet, reduces bitterness) or 6-methylflavone (tasteless, reduces bitterness), sucralose alone, and sodium chloride alone. Bitterness ratings differed by ancestry for two of the five drugs (amodiaquine and PROP) and for TAF mixed with sucralose. Genetic analysis showed that people with variants in one bitter receptor variant gene (TAS2R38) reported PROP was more bitter than did those with a different variant (p= 7.6e-19) and that people with either an RIMS2 or a THSD4 genotype found sucralose more bitter than did others (p=2.6e-8, p=7.9e-11, resp.). Our findings may help guide the formulation of bad-tasting medicines to meet the needs of those most sensitive to them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA