Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 46(5): 781-789, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38847981

RESUMEN

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose to form isomaltulose, a valuable functional sugar widely used in the food industry. However, the lack of safe and efficient heterologous expression systems hinders SIase production and application. In this study, we achieved antibiotic-free SIase expression in Bacillus subtilis through genome integration. Using CRISPR/Cas9 system, SIase expression cassettes were integrated into various genomic loci, including amyE and ctc, both individually and in combination, resulting in single-copy and muti-copy integration strains. Engineered strains with a maltose-inducible promoter effectively expressed and secreted SIase. Notably, multi-copy strain exhibited enhanced SIase production, achieving 4.4 U/mL extracellular activity in shake flask cultivations. Furthermore, crude enzyme solution from engineered strain transformed high concentrations sucrose into high yields of isomaltulose, reaching a maximum yield of 94.6%. These findings demonstrate antibiotic-free SIase production in B. subtilis via genome integration, laying the foundation for its industrial production and application.

2.
Biotechnol J ; 19(5): e2400178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719574

RESUMEN

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Asunto(s)
Bacillus subtilis , Glucosiltransferasas , Isomaltosa , Proteínas Recombinantes , Sacarosa , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Isomaltosa/metabolismo , Isomaltosa/análogos & derivados , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sacarosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética , Sistemas CRISPR-Cas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38407782

RESUMEN

Maltotetraose amylase, which catalyzes the hydrolysis of amylaceous polysaccharides into maltooligosaccharides with maltotetraose as the main product, is extensively used in the food industry. However, the lack of efficient expression system for maltotetraose amylase has hampered its production and application. In this study, high-level production of a maltotetraose amylase mutant (referred to as Pp-Mta∆CBM) from Pseudomonas saccharophila was achieved in Pichia pastoris X-33. First, the gene of maltotetraose amylase with the carbohydrate-binding module (CBM) removed was codon-optimized and cloned into the pPICZαA vector, followed by transformation into P. pastoris X-33 for expression. Using the promoter PAOX1 and signal peptide α-factor, high-level production of Pp-Mta∆CBM with minimal extracellular impurity proteins was achieved, resulting in an extracellular activity of 367.9 U/mL after 7 days of cultivation in shake flasks. Next, the expressed Pp-Mta∆CBM was purified and characterized. This recombinant enzyme was glycosylated and has maximum activity at 55 ℃ and pH 7.0. Its Km for soluble starch was 4.1 g/L, and its kcat was 3237.6 s-1. Finally, the Pp-Mta∆CBM was found to produce a maximum maltotetraose yield of 57.1% in the presence of 200 g/L of substrate. The findings presented in this study demonstrate the efficient production of Pp-Mta∆CBM in P. pastoris, providing a new expression system for maltotetraose amylase and laying the foundation for its scale-up production and industrial application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA