Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 98(1): 191-221, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36173002

RESUMEN

Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.


Asunto(s)
Ecosistema , Invertebrados , Humanos , Animales , Invertebrados/fisiología , Temperatura , Agua , Agua Dulce , Ríos , Monitoreo del Ambiente
2.
Sci Total Environ ; 656: 482-494, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30522031

RESUMEN

This paper presents an environmental flow methodology that was developed to accommodate shallow, highly dynamic micro-tidal estuaries found along the wave-dominated coast of South Arica. This method differs to most other approaches that primarily focus on larger permanently open systems having unrestricted inlets. Following an adaptive, design science research approach, the 7-step method adopted both ecohydrological and ecosystem-based concepts, encapsulating key hydrologicalhydrodynamic-biogeochemical processes, as well as biotic responses. The procedure also addresses a key challenge often encountered in applying these approaches to complex estuarine systems - the mismatch of temporal and spatial scales between abiotic processes and biotic responses. The method simplifies and aggregates abiotic processes to appropriate scales suitable for analysis of biotic responses, by introducing concepts such zoning and major physical states that characterize an estuary. The method's flexibility in data requirements lends itself to applications in countries where data is limited or where differences exist in data quality between systems. Essential in any environmental flow determination process, however, is long-term monitoring to incrementally improve confidence of the input data, but also to evaluate whether allocated flows achieve desired objectives set. Future challenges include refining the method to accommodate flow changes within much shorter timeframes and in conjunction with escalating global change pressures amongst other; pollution, living resource exploitation and physical destruction of habitat.

3.
Bioscience ; 67(10): 897-911, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29599537

RESUMEN

Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric-cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species.

4.
Philos Trans R Soc Lond B Biol Sci ; 371(1691): 20150216, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26977058

RESUMEN

Attempts to infer the ecological drivers of macroevolution in deep time have long drawn inspiration from work on extant systems, but long-term evolutionary and geological changes complicate the simple extrapolation of such theory. Recent efforts to incorporate a more informed ecology into macroevolution have moved beyond the descriptive, seeking to isolate generating mechanisms and produce testable hypotheses of how groups of organisms usurp each other or coexist over vast timespans. This theme issue aims to exemplify this progress, providing a series of case studies of how novel modelling approaches are helping infer the regulators of biodiversity in deep time. In this Introduction, we explore the challenges of these new approaches. First, we discuss how our choices of taxonomic units have implications for the conclusions drawn. Second, we emphasize the need to embrace the interdependence of biotic and abiotic changes, because no living organism ignores its environment. Third, in the light of parts 1 and 2, we discuss the set of dynamic signatures that we might expect to observe in the fossil record. Finally, we ask whether these dynamics represent the most ecologically informative foci for research efforts aimed at inferring the regulators of biodiversity in deep time. The papers in this theme issue contribute in each of these areas.


Asunto(s)
Biodiversidad , Especiación Genética , Filogenia , Animales , Ambiente , Modelos Biológicos , Procesos Estocásticos , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA