Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17445, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166455

RESUMEN

Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters. Whether increased atmospheric nitrogen deposition also affects plant diversity at larger spatial scales remains unknown. Here, using grassland plant community data collected in 765 plots, across 153 different sites and 9 countries in northwestern Europe, we investigate whether relationships between atmospheric nitrogen deposition and plant biodiversity are scale-dependent. We found that high levels of atmospheric nitrogen deposition were associated with low levels of plant species richness at the plot scale but also at the scale of sites and regions. The presence of 39% of plant species was negatively associated with increasing levels of nitrogen deposition at large (site) scales, while only 1.5% of the species became more common with increasing nitrogen deposition, indicating that large-scale biodiversity changes were mostly driven by "loser" species, while "winner" species profiting from high N deposition were rare. Some of the "loser" species whose site presence was negatively associated with atmospheric nitrogen deposition are listed as "threatened" in at least some EU member states, suggesting that nitrogen deposition may be a key contributor to their threat status. Hence, reductions in reactive nitrogen emissions will likely benefit plant diversity not only at local but also at larger spatial scales.


Asunto(s)
Atmósfera , Biodiversidad , Nitrógeno , Plantas , Nitrógeno/análisis , Nitrógeno/metabolismo , Plantas/metabolismo , Europa (Continente) , Atmósfera/química , Pradera
2.
Environ Sci Ecotechnol ; 21: 100434, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989258

RESUMEN

Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and in situ biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2-5 km radius and 0.05-2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.

3.
Sci Total Environ ; 947: 174495, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971238

RESUMEN

To unveil possible changes in diatom communities in Cypriot streams over the last ten years or so, we selected samples from the years 2020, 2021, and 2022 for the "recent" dataset (N = 119) and samples from the years 2010 and 2011 for the "historical" dataset (N = 108). Biotic homogenization has become a truly global phenomenon. Here we show that, over the last ten years, in response to increased water temperature, conductivity, and discharge variability due to climate-change, Cypriot stream diatom communities include a higher number of trivial (= widespread, tolerant, and opportunistic), aerial, and thermophilic species, have reduced ß-diversity and increased nestedness. Moreover, IndVal analysis shows that indicator species from the historical dataset were characteristic, often relatively rare species, while the indicators of the recent dataset were a group of typical trivial, eutraphentic, and thermophilic species. As is almost always the case, the diatom communities we studied were subjected to multiple stressors, often affecting them in opposite ways. Besides the increase in trivial species, the reduction in ß-diversity, and the rise in nestedness mentioned above, the diatom assemblages we studied also showed an increase in α-diversity that could be due to a moderate reduction in nutrients in several sites. High-ecological-integrity ecosystems, such as springs, waterfalls, and dripping rock-walls, in particular springs that were shown to be excellent hydrologic refugia in climates heavily affected by climate change, and the stream sites close to them should be carefully protected, as they can be refugia for sensitive and characteristic species that can recolonize the adjacent streams after adverse climatic events.


Asunto(s)
Cambio Climático , Diatomeas , Ríos , Monitoreo del Ambiente , Biodiversidad , Ecosistema
4.
Plant Biol (Stuttg) ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967240

RESUMEN

Neotropical seasonal dry forest (NSDF) is one of the most threatened ecosystems according to global climate change predictions. Nonetheless, few studies have evaluated the global climate change impacts on diversity patterns of NSDF plants. The lack of whole biome-scale approaches restricts our understanding of global climate change consequences in the high beta-diverse NSDF. We analysed the impact of global climate change on species distribution ranges, species richness, and assemblage composition (beta diversity) for 1,178 NSDF species. We used five representative plant families (in terms of abundance, dominance, and endemism) within the NSDF: Cactaceae, Capparaceae, Fabaceae, Malvaceae, and Zygophyllaceae. We reconstructed potential species distributions in the present and future (2040-2080), considering an intermediate Shared Socioeconomic Pathway and two dispersal ability assumptions on the taxa. Using a resource use scores index, we related climate-induced range contractions with species' water stress tolerance. Even under a favourable dispersal scenario, species distribution and richness showed future significant declines across those sites where mean temperature and precipitation seasonality are expected to increase. Further, changes in species range distribution in the future correlated positively with potential use of resources in Fabaceae. Results suggest that biotic heterogenization will likely be the short-term outcome at biome scale under dispersal limitations. Nonetheless, by 2080, the prevailing effect under both dispersal assumptions will be homogenization, even within floristic nuclei. This information is critical for further defining new areas worth protecting and future planning of mitigation actions for both species and the whole biome.

5.
Sci Total Environ ; 944: 173885, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38871310

RESUMEN

Accelerating global urbanization is leading to drastic losses and restructuring of biodiversity. Although it is crucial to understand urban impacts on biodiversity to develop mitigation strategies, there is a dearth of knowledge on the functional structure of fish assemblages spanning the entire city-scale spectrum of urbanization intensity. Here, using environmental DNA sampled from 109 water sites in Beijing, we investigated the taxonomic and functional diversity patterns of fish assemblages across the city and uncovered community-, trait-, and species-level responses to various environmental stressors. By ranking sampling sites into three disturbance levels according to water physiochemical and landcover conditions, we found that both native and non-native fish taxonomic and functional α-diversity decreased significantly with elevating disturbance, as strong disturbance led to the disappearance of many species. However, the quantitative taxonomic and functional ß-diversity components of native and non-native fish showed distinct patterns; assemblage turnover dominated native fish ß-diversity and decreased with increasing disturbance, whereas species/trait richness differences dominated non-native fish ß-diversity and increased with disturbance intensity particularly in lotic waters. RLQ and fourth-corner analyses revealed that fish size, fecundity, diet, and reproductive behaviors were significantly correlated with water quality, with pollution-tolerant, larger-sized native and omnivorous non-native fishes being urban winners, which indicates strong trait-dependent environmental filtering. Potential ecological indicator species were identified based on the sensitivity of fish responses to pollution loads; these were mostly small native species, and many have bivalve-dependent reproduction. Our results demonstrate that, along with native fish assemblage simplification and homogenization, urban stressors exert profound impacts on community trait composition, highlighting the need to consider both biodiversity loss and functional reorganization in combating disturbance of aquatic ecosystems under global urbanization. Furthermore, correlations between cropland cover and water nutrient level suggested that the management of agricultural runoff might be critically important for safeguarding urban water quality.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Peces , Urbanización , Animales , Peces/fisiología , Beijing , Calidad del Agua
6.
Ecol Appl ; 34(4): e2943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504599

RESUMEN

Evaluating the impacts of farming systems on biodiversity is increasingly important given the need to stem biodiversity loss, decrease fossil fuel dependency, and maintain ecosystem services benefiting farmers. We recorded woody and herbaceous plant species diversity, composition, and abundance in 43 wetland-adjacent prairie remnants beside crop fields managed using conventional, minimum tillage, organic, or perennial cover (wildlife-friendly) land management in the Prairie Pothole Region. We used a hierarchical framework to estimate diversity at regional and local scales (gamma, alpha), and how these are related through species turnover (beta diversity). We tested the expectation that gamma richness/evenness and beta diversity of all plants would be higher in remnants adjacent to perennial cover and organic fields than in conventional and minimum tillage fields. We expected the same findings for plants providing ecosystem services (bee-pollinated species) and disservices (introduced species). We predicted similar relative effects of land management on alpha diversity, but with the expectation that the benefits of organic farming would decrease with increasing grassland in surrounding landscapes. Gamma richness and evenness of all plants were highest for perennial cover, followed by minimum tillage, organic, and conventional sites. Bee-pollinated species followed a similar pattern for richness, but for evenness organic farming came second, after perennial cover sites, followed by minimum tillage and conventional. For introduced species, organic sites had the highest gamma richness and evenness. Grassland amount moderated the effect of land management type on all plants and bee-pollinated plant richness, but not as expected. The richness of organic sites increased with the amount of grassland in the surrounding landscape. Conversely, for conventional sites, richness increased as the amount of grassland in the landscape declined. Our results are consistent with the expectation that adopting wildlife-friendly land management practices can benefit biodiversity at regional and local scales, in particular the use of perennial cover to benefit plant diversity at regional scales. At more local extents, organic farming increased plant richness, but only when sufficient grassland was available in the surrounding landscape; organic farms also had the highest beta diversity for all plants and bee-pollinated plants. Maintaining native cover in agroecosystems, in addition to low-intensity farming practices, could sustain plant biodiversity and facilitate important ecosystem services.


Asunto(s)
Agricultura , Biodiversidad , Plantas , Humedales , Agricultura/métodos , Plantas/clasificación , Pradera , Conservación de los Recursos Naturales/métodos
7.
Glob Chang Biol ; 30(2): e17167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348640

RESUMEN

Land use intensification favours particular trophic groups which can induce architectural changes in food webs. These changes can impact ecosystem functions, services, stability and resilience. However, the imprint of land management intensity on food-web architecture has rarely been characterized across large spatial extent and various land uses. We investigated the influence of land management intensity on six facets of food-web architecture, namely apex and basal species proportions, connectance, omnivory, trophic chain lengths and compartmentalization, for 67,051 European terrestrial vertebrate communities. We also assessed the dependency of this influence of intensification on land use and climate. In addition to more commonly considered climatic factors, the architecture of food webs was notably influenced by land use and management intensity. Intensification tended to strongly lower the proportion of apex predators consistently across contexts. In general, intensification also tended to lower proportions of basal species, favoured mesopredators, decreased food webs compartmentalization whereas it increased their connectance. However, the response of food webs to intensification was different for some contexts. Intensification sharply decreased connectance in Mediterranean and Alpine settlements, and it increased basal tetrapod proportions and compartmentalization in Mediterranean forest and Atlantic croplands. Besides, intensive urbanization especially favoured longer trophic chains and lower omnivory. By favouring mesopredators in most contexts, intensification could undermine basal tetrapods, the cascading effects of which need to be assessed. Our results support the importance of protecting top predators where possible and raise questions about the long-term stability of food webs in the face of human-induced pressures.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Humanos , Vertebrados/fisiología , Bosques , Clima
8.
Ecology ; 105(3): e4246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286517

RESUMEN

Understanding how synchronous species fluctuations affect community stability is a main research topic in ecology. Yet experimental studies evaluating how changes in disturbance regimes affect the synchrony and stability of populations and communities remain rare. We hypothesized that spatially heterogeneous disturbances of moderate intensity would promote metacommunity stability by decreasing the spatial synchrony of species fluctuations. To test this hypothesis, we exposed rocky shore communities of algae and invertebrates to homogeneous and gradient-like spatial patterns of disturbance at two levels of intensity for 4 years and used synchrony networks to characterize community responses to these disturbances. The gradient-like disturbance at low intensity enhanced spatial ß diversity compared to the other treatments and produced the most heterogeneous and least synchronized network, which was also the most stable in terms of population and community fluctuations. In contrast, homogeneous disturbance destabilized the community, enhancing spatial synchronization. Intense disturbances always reduced spatial ß diversity, indicating that strong perturbations could destabilize communities via biotic homogenization regardless of their spatial structure. Our findings corroborated theoretical predictions, emphasizing the importance of spatially heterogeneous disturbances in promoting stability by amplifying asynchronous spatial and temporal fluctuations in population and community abundance. In contrast to other networks, synchrony networks are vulnerable to the removal of most peripheral nodes, which are less synchronized, but may contribute more to stability than other nodes by dampening large fluctuations in species abundance. Our findings suggest that climate change and direct anthropogenic disturbance can compromise the stability of ecological communities through combined effects on diversity and synchrony, as well as further affecting ecosystems through habitat loss.


Asunto(s)
Ecología , Ecosistema , Animales , Invertebrados , Luz
9.
Water Res ; 252: 121198, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295455

RESUMEN

Combination of taxa and function can provide a more comprehensive picture on human-induced microbial homogenization. Here, we obtained 2.58 billion high-throughput sequencing reads and 479 high-quality metagenome-assembled genomes (MAGs) of planktonic microbial communities in a subtropical river for 5 years. We found the microbial taxa homogenization and functional homogenization were uncoupled. Although human activities in downstream sites significantly decreased the taxonomic diversity of non-abundant ASV communities (16S rRNA gene amplicon sequence variants), they did not significantly decrease the taxonomic diversity of abundant ASV and total observed MAG communities. However, the total observed MAG communities in downstream sites tended to homogenize into some specific taxa which encode human-activity-related functional genes, such as nutrient cycles, greenhouse gas emission, antibiotic and arsenic resistance. Those specific MAGs with high taxonomic diversity caused the weak heterogenization of total observed MAG communities in downstream sites. Moreover, functional homogenization promoted the synchrony among downstream MAGs, and these MAGs constructed some specific network modules might to synergistically execute or resist the human-activity-related functions. High synchrony also led to the tandem effects among MAGs and thus decreased community stability. Overall, our findings revealed the links of microbial taxa, functions and stability under human activity impacts, and provided a strong evidence to encourage us re-thinking biotic homogenization based on microbial taxa and their functional attributes.


Asunto(s)
Bacterias , Microbiota , Humanos , Bacterias/genética , ARN Ribosómico 16S/genética , Metagenoma , Microbiota/genética , Ríos
10.
Mar Environ Res ; 193: 106261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981448

RESUMEN

Inter-oceanic scale studies allow us to understand the global spread of micro-organisms in marine ecosystems. In this study, micro-eukaryotic communities in marine surface sediment were collected from tropical to Arctic sites. We found that micro-eukaryotic generalists had much higher intraspecific variation than specialists which allow them to distribute more widely through higher spatiotemporal asynchrony and complementary niche preferences among conspecific taxa. Moreover, comparing to the host-associated protozoa and small metazoa, the algae and free-living protozoa with higher intraspecific variation allow them to have wider distribution ranges. Species abundance also played an important role in driving the distribution ranges of generalists and specialists. The generalists had important effects on regional α-diversity even at an inter-oceanic scale which led to the micro-eukaryotic species richness in polar sites to be mainly influenced by the regional generalists but not the local specialists. In particular, more than 97% of algal species in polar sites were shared with the tropical and subtropical sites (including toxic dinoflagellate). Overall, our study suggests that the effects of global change and human activities on the vulnerable high latitude habitats may lead to biotic homogenization for the whole microbial community (not only the dispersal of some harmful algae) through the potential long-distance spread of generalists.


Asunto(s)
Ecosistema , Microbiota , Humanos , Océanos y Mares , Plantas , Actividades Humanas
11.
Biology (Basel) ; 12(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38132314

RESUMEN

Rapid urbanization has triggered nutrient loading, which will inevitably lead to the eutrophication of water bodies and further affect the structure of aquatic populations. At present, eutrophication is a significant challenge for urban aquatic ecosystems. However, we still know little about the correlation between eutrophication in urban rivers and the composition of aquatic functional groups. The effects of urban river eutrophication on rotifer communities were investigated using an annual field survey of the Jinan section of the Xiaoqing River, a typical urban river in northern China. Using functional diversity (FD) and beta diversity, the spatiotemporal variation of the aquatic biological functional groups regime along stretches subject to different eutrophication was investigated. The functional evenness (FEve) and functional divergence (FDiv) decreased significantly with the increment of the trophic level index. Functional diversity exhibits an extremely low level across functional groups, with the richness difference (RichDiff) being an important component. The results indicate that eutrophication led to the homogenization of rotifer communities. This can be attributed to the functional homogenization of the rotifer community in the Jinan section of the Xiaoqing River. The observed homogenization may be due to widely distributed species complementing the ecological niche space. Our findings provide valuable information on the conservation of the urban river under the threat of eutrophication caused by high-intensity human activities.

12.
Proc Biol Sci ; 290(2011): 20231345, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964526

RESUMEN

There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. We used 12 montane grassland sites along an 800 km north-south gradient across the UK, to test whether cessation of grazing affects local α- and ß-diversity of below-ground food webs. We show cessation of grazing leads to strongly decreased α-diversity of most groups of soil microbes and fauna, particularly of relatively rare taxa. By contrast, the ß-diversity varied between groups of soil organisms. While most soil microbial communities exhibited increased homogenization after cessation of grazing, we observed decreased homogenization for soil fauna after cessation of grazing. Overall, our results indicate that exclusion of domesticated herbivores from historically grazed montane grasslands has far-ranging negative consequences for diversity of below-ground food webs. This underscores the importance of grazers for maintaining the diversity of below-ground communities, which play a central role in ecosystem functioning.


Asunto(s)
Microbiota , Suelo , Cadena Alimentaria , Pradera , Biodiversidad
13.
Glob Chang Biol ; 29(24): 6931-6944, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37846595

RESUMEN

Human-induced climate change has intensified negative impacts on socioeconomic factors, the environment, and biodiversity, including changes in rainfall patterns and an increase in global average temperatures. Drylands are particularly at risk, with projections suggesting they will become hotter, drier, and less suitable for a significant portion of their species, potentially leading to mammal defaunation. We use ecological niche modelling and community ecology biodiversity metrics to examine potential geographical range shifts of non-volant mammal species in the largest Neotropical dryland, the Caatinga, and evaluate impacts of climate change on mammal assemblages. According to projections, 85% of the mammal species will lose suitable habitats, with one quarter of species projected to completely lose suitable habitats by 2060. This will result in a decrease in species richness for more than 90% of assemblages and an increase in compositional similarity to nearby assemblages (i.e., reduction in spatial beta diversity) for 70% of the assemblages. Small-sized mammals will be the most impacted and lose most of their suitable habitats, especially in highlands. The scenario is even worse in the eastern half of Caatinga where habitat destruction already prevails, compounding the threats faced by species there. While species-specific responses can vary with respect to dispersal, behavior, and energy requirements, our findings indicate that climate change can drive mammal assemblages to biotic homogenization and species loss, with drastic changes in assemblage trophic structure. For successful long-term socioenvironmental policy and conservation planning, it is critical that findings from biodiversity forecasts are considered.


Asunto(s)
Cambio Climático , Mamíferos , Animales , Humanos , Mamíferos/fisiología , Bosques , Ecosistema , Biodiversidad , Clima Tropical
14.
J Environ Manage ; 345: 118665, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579603

RESUMEN

Influenced by the interplay of global climate change and urbanization, urban plants have become increasingly homogenized in China. However, regional effects of biotic homogenization cannot be clearly explained due to the lack of continuous large-scale data. Thus, we explored the characteristics and regional effects of biotic homogenization, which not only contributes to the improvement of urban biodiversity, but also has important value for human well-being. Here, we analyzed the woody plants of 101 cities in 8 major urban agglomerations in China. The diversity patterns and influencing factors were explored using generalized additive, geographically weighted regression, and structural equation models. The main results were as follows: (1) The issue of woody plant homogenization is primarily manifested in urban greening species in China. (2) The characteristics of woody plant homogenization exhibit notable regional effects at a large scale. (3) Latitude, urban area, altitude and climatic factors all impact the woody plant homogenization. Thus, we found that the homogenization characteristics of urban greening species exhibit regional variations, influenced by both natural and anthropogenic factors. Finally, we suggested that urban biodiversity management should be considered specific regional environmental, both to meet the needs of residents.


Asunto(s)
Biodiversidad , Urbanización , Humanos , Ciudades , Madera , Plantas , China , Ecosistema
15.
Environ Sci Pollut Res Int ; 30(40): 92390-92403, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37491488

RESUMEN

Human pressure on urban landscapes has serious consequences for urban plant species. Therefore, environmental and anthropogenic factors affect the assembly of urban wildlife in plant communities. For biodiversity conservation and ecosystem services in urban areas, it is crucial to understand the impacts of urbanization as well as the introduction of alien plant species on urban plant communities. On 47 sites in Poznan (W Poland), we studied variation within and between three management greenery habitats, i.e., urban parks, greenery associated with housing estates, and urban grasslands, as they relate to taxonomical, functional, and phylogenetic alpha and beta diversity. We also examined how urbanization (measured by ISA) and alien plant species relate to vegetation compositional differences. We found that both urbanization and alien plant species cover decreased alpha diversity, while urbanization had various impacts on beta diversity within each studied habitat. Our results suggest that human pressure leads to similarities in the urban flora, where plant species with specific functional traits adapted to the urban environment. To achieve sustainable urbanization, urban planners should not only create diverse green spaces but also eliminate alien plants, increasing the role of urban land management in promoting the wildness of plant biodiversity in cities.


Asunto(s)
Especies Introducidas , Urbanización , Humanos , Ecosistema , Filogenia , Biodiversidad , Ciudades , Plantas
16.
Ecol Lett ; 26(8): 1261-1276, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37493107

RESUMEN

Colonization and extinction at local and regional scales, and gains and losses of patches are important processes in the spatiotemporal dynamics of metacommunities. However, analytical challenges remain in quantifying such spatiotemporal dynamics when species extinction-colonization and patch gain and loss processes act simultaneously. Recent advances in network analysis show great potential in disentangling the roles of colonization, extinction, and patch dynamics in metacommunities. Here, we developed a species-patch network approach to quantify metacommunity dynamics including (i) temporal changes in network structure, and (ii) temporal beta diversity of species-patch links and its components that reflect species extinction-colonization and patch gain and loss. Application of the methods to simulated datasets demonstrated that the approach was informative about metacommunity assembly processes. Based on three empirical datasets, our species-patch network approach provided additional information about metacommunity dynamics through distinguishing the effects of species colonization and extinction at different scales from patch gains and losses and how specific environmental factors related to species-patch network structure. In conclusion, our species-patch network framework provides effective methods for monitoring and revealing long-term metacommunity dynamics by quantifying gains and losses of both species and patches under local and global environmental change.


Asunto(s)
Ecosistema , Extinción Biológica , Dinámica Poblacional
17.
J Environ Manage ; 344: 118374, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331311

RESUMEN

Over the past centuries, freshwater fish introductions and extinctions have been the major environmental and ecological crises in various water bodies in China. However, consequences of such crises on freshwater fish biodiversity in China remain only partially or locally studied. Furthermore, identifications of relatively sensitive areas along with stressors (i.e., environmental and anthropogenic drivers) influencing freshwater fish biodiversity patterns are still pending. Taxonomic, functional, and phylogenetic facets of biodiversity can well describe and evaluate the underlying processes affecting freshwater fish biodiversity patterns under different dimensionalities. Here we thus evaluated temporal changes in these facets of freshwater fish biodiversity as well as a new developed biodiversity index, multifaceted changes in fish biodiversity, for over a century at the basin level throughout China using both alpha and beta diversity approaches. We also identified the drivers influencing the changes in fish biodiversity patterns using random forest models. The results showed that fish assemblages in Northwest and Southwest China (e.g., Ili River basin, Tarim basin, and Erhai Lake basin) experienced extreme temporal and multifaceted changes in the facets of biodiversity compared with other regions, and environmental factors (e.g., net primary productivity, average annual precipitation, and unit area) largely drove these changes. Since fish faunas in over 80% of China's water bodies covering more than 80% of China's surface were currently undergoing taxonomic, functional, and phylogenetic homogenization, targeted conservation and management strategies should be proposed and implemented, especially for the areas with relatively high changes in biodiversity.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Animales , Filogenia , Lagos , Peces , China , Agua , Ecosistema
18.
Sci Total Environ ; 884: 163856, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142012

RESUMEN

Biotic homogenization by invasive alien species is one of the dominant drivers of global environmental change. However, little is known about the patterns of biotic homogenization in global biodiversity hotspots. Here, we fill this knowledge gap by studying the patterns of biotic homogenization and associated geographic and climatic correlates in Indian Himalayan Region (IHR). For this, we use a novel biodiversity database comprising 10,685 native and 771 alien plant species across 12 provinces of the IHR. The database was assembled by screening 295 and 141 studies published from 1934 to 2022 for natives and aliens, respectively. Our results revealed that each native species on average was distributed among 2.8 provinces, whereas the alien species in 3.6 provinces, thereby indicating wider distribution range of alien species in the IHR. The Jaccard's similarity index between the provinces was higher for alien species (mean = 0.29) as compared to natives (mean = 0.16). Addition of alien species pool has homogenized most of the provincial pairwise floras (89.4 %) across the IHR, with greater dissimilarity in their native floras. Our results revealed that the alien species have strong homogenization effect on the provincial floras, regardless of their differences in geographic and climatic distances. The biogeographic patterns of alien and native species richness in the IHR were better explained by a different set of climatic variables, the former by precipitation of driest month and the latter by annual mean temperature. Our study contributes to better understanding of the patterns of biotic homogenization in the IHR and its geographic and climatic correlates. Looking ahead, in an era of Anthropocene, we discuss the wide implications of our findings in guiding biodiversity conservation and ecosystem restoration in global hotspot regions.


Asunto(s)
Ecosistema , Especies Introducidas , Biodiversidad , Temperatura , India
19.
J Environ Manage ; 341: 118017, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150169

RESUMEN

Biodiversity loss is caused by intensive human activities and threatens human well-being. However, less is known about how the combined effects of multiple stressors on the diversity of internal (alpha diversity) and multidimensional (beta diversity) communities. Here, we conducted a long-term experiment to quantify the contribution of environmental stressors (including water quality, land use, climate factors, and hydrological regimes) to macroinvertebrate communities alpha and beta diversity in the mainstream of the Songhua River, the third largest river in China, from 2012 to 2019. Our results demonstrated that the alpha and beta diversity indices showed a decline during the study period, with the dissimilarity in community composition between sites decreasing significantly, especially in the impacted river sections (upper and midstream). Despite overall improvement in water quality after management intervention, multiple human-caused stressors still have led to biotic homogenization of macroinvertebrate communities in terms of both taxonomic and functional diversities in the past decade. Our study revealed the increased human land use explained an important portion of the variation of diversities, further indirectly promoting biotic homogenization by changing the physical and chemical factors of water quality, ultimately altering assemblage ecological processes. Furthermore, the facets of diversity have distinct response mechanisms to stressors, providing complementary information from the perspective of taxonomy and function to better reflect the ecological changes of communities. Environmental filtering determined taxonomic beta diversity, and functional beta diversity was driven by the joint efforts of stressors and spatial processes. Finally, we proposed that traditional water quality monitoring alone cannot fully reveal the status of river ecological environment protection, and more importantly, we should explore the continuous changes in biodiversity over the long term. Meanwhile, our results also highlight timely control of nutrient input and unreasonable expansion of land use can better curb the ecological degradation of rivers and promote the healthy and sustainable development of floodplain ecosystems.


Asunto(s)
Ecosistema , Invertebrados , Animales , Humanos , Invertebrados/fisiología , Efectos Antropogénicos , Monitoreo del Ambiente/métodos , Biodiversidad , China
20.
Ecology ; 104(8): e4104, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37203421

RESUMEN

Biodiversity changes, such as decline in species richness and biotic homogenization, can have grave consequences for ecosystem functionality. Careful investigation of biodiversity-ecosystem multifunctionality linkages with due consideration of conceptual and technical challenges is required to make the knowledge practically useful in managing social-ecological systems. In this paper, we introduced different methods to assess perspectives regarding the issue of diversity-multifunctionality, including a possible multifunctional redundancy/uniqueness, and the influences of the number and identity of functions on multifunctionality. In particular, we aimed to align methods with detecting the mechanisms underpinning diversity-multifunctional relationships that are free from statistical biases. Based on a set of novel methods that excluded analytical biases resulting from differences in the number and identities of multiple functions considered, we found that a substantial portion of species disproportionately supported ecosystem functions and that the diversity effects on multifunctionality were more markedly observed when more functions were considered. These results jointly emphasize that individual species are, to some extent, both functionally unique as well as redundant, highlighting the complexity and necessity for managed assemblages to retain high levels of diversity. We also observed that the relative magnitude of uniqueness or redundancy can differ between species and functions and therefore should be defined in a multifunctional context. We further found that only a small subset of species was identified as significantly less important, especially at low levels of multifunctionality. Taken together, given the low level of multifunctional redundancy we identified, we stress that unraveling the hierarchical roles of biodiversity at different levels, such as individual species and their assemblages, should be a high research priority, in both theory and practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA