Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fundam Res ; 3(2): 209-218, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38932925

RESUMEN

Grassland is one of the largest terrestrial biomes, providing critical ecosystem services such as food production, biodiversity conservation, and climate change mitigation. Global climate change and land-use intensification have been causing grassland degradation and desertification worldwide. As one of the primary medium for ecosystem energy flow and biogeochemical cycling, grassland carbon (C) cycling is the most fundamental process for maintaining ecosystem services. In this review, we first summarize recent advances in our understanding of the mechanisms underpinning spatial and temporal patterns of the grassland C cycle, discuss the importance of grasslands in regulating inter- and intra-annual variations in global C fluxes, and explore the previously unappreciated complexity in abiotic processes controlling the grassland C balance, including soil inorganic C accumulation, photochemical and thermal degradation, and wind erosion. We also discuss how climate and land-use changes could alter the grassland C balance by modifying the water budget, nutrient cycling and additional plant and soil processes. Further, we examine why and how increasing aridity and improper land use may induce significant losses in grassland C stocks. Finally, we identify several priorities for future grassland C research, including improving understanding of abiotic processes in the grassland C cycle, strengthening monitoring of grassland C dynamics by integrating ground inventory, flux monitoring, and modern remote sensing techniques, and selecting appropriate plant species combinations with suitable traits and strong resistance to climate fluctuations, which would help design sustainable grassland restoration strategies in a changing climate.

2.
Environ Sci Pollut Res Int ; 28(2): 2328-2341, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32880839

RESUMEN

Conventional agricultural practices, such as rice plantations, often contaminate the soil and water with xenobiotics. Here we evaluated the microbiota composition in experimental rice planting with a record of prolonged pesticide use, using 16S and 18S rRNA amplicon sequencing. We investigated four components of a complete agricultural system: affluent water (A), rice rhizosphere soil (R), sediment from a storage pond (S), and effluent (E) water (drained from the storage pond). Despite the short spatial distance between our sites, the beta diversity analysis of bacterial communities showed two well-defined clusters, separating the water and sediment/rhizosphere samples; rhizosphere and sediment were richer while the effluent was less diverse. Overall, the site with the highest evenness was the rhizosphere. Unlike the bacterial communities, Shannon diversity of microeukaryotes was significantly different between A and E. The effluent presented the lowest values for all ecological indexes tested and differed significantly from all sampled sites, except on evenness. When mapped the metabolic pathways, genes corresponding to the degradation of aromatic compounds, including genes related to pesticide degradation, were identified. The most abundant genes were related to the degradation of benzoate. Our results indicate that the effluent is a selective environment for fungi. Interestingly, the overall fungal diversity was higher in the affluent, the water that reached the system before pesticide application, and where the prokaryotic diversity was the lowest. The affluent and effluent seem to have the lowest environmental quality, given the presence of bacteria genera previously recorded in environments with high concentrations of pesticide residues. The microbiota, environmental characteristics, and pesticide residues should be further studied and try to elucidate the potential for pesticide degradation by natural consortia. Thus, extensive comparative studies are needed to clarify the microbial composition, diversity, and functioning of rice cultivation environments, and how pesticide use changes may reflect differences in microbial structure.


Asunto(s)
Microbiota , Oryza , Plaguicidas , Rizosfera , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA