Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mar Drugs ; 22(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921587

RESUMEN

Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.


Asunto(s)
Antibacterianos , Genisteína , Genisteína/farmacología , Genisteína/metabolismo , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Microbacterium , ARN Ribosómico 16S/genética , Actinobacteria/metabolismo , Actinobacteria/genética , Metabolismo Secundario , Filogenia , Aciltransferasas
2.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831295

RESUMEN

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Asunto(s)
Antraquinonas , Endófitos , Hypericum , Familia de Multigenes , Policétidos , Hypericum/microbiología , Hypericum/genética , Hypericum/metabolismo , Policétidos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Antraquinonas/metabolismo , Hongos/genética , Genoma Fúngico , Simulación por Computador , Sintasas Poliquetidas/genética , Perileno/análogos & derivados , Perileno/metabolismo , Antracenos/metabolismo , Genómica , Filogenia
3.
Microbiome ; 12(1): 94, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790030

RESUMEN

BACKGROUND: Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS: Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS: This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.


Asunto(s)
Bacterias , Bacteriófagos , Aprendizaje Profundo , Metagenoma , Metagenómica , Péptidos , Ribosomas , Péptidos/metabolismo , Péptidos/genética , Bacteriófagos/genética , Metagenómica/métodos , Ribosomas/metabolismo , Ribosomas/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacterias/clasificación , Microbiota/genética , Procesamiento Proteico-Postraduccional , Agua de Mar/microbiología , Agua de Mar/virología , Océanos y Mares
4.
Front Microbiol ; 15: 1361961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784813

RESUMEN

Introduction: The white-spotted flower chafer (Protaetia brevitarsis seulensis), which is widely distributed in Asian countries, is traditionally used in oriental medicine. However, its larvae are prone to severe damage by green muscardine disease (caused by Metarhizium anisopliae) during breeding. The aim of this study was to characterize Bacillus velezensis TJS119, which has been isolated from freshwater, and investigate its potential as a biocontrol agent against M. anisopliae in insects. Methods: TJS119 was obtained from freshwater samples in the Republic of Korea and was classified as B. velezensis. We evaluated its in vitro antifungal effect, sequenced the bacterial whole genome, mined genes responsible for the synthesis of secondary metabolites, performed secondary metabolite analysis Ultra performance liquid chromatography-mass spectrometry (UPLC-MS/MS), and conducted bioassays for determining green muscardine disease control ability. Results: Bacillus velezensis TJS119 inhibited the mycelial growth of M. anisopliae in vitro. The size of the B. velezensis TJS119 genome was estimated to be 3,890,913 bp with a GC content of 46.67% and 3,750 coding sequences. Biosynthetic gene clusters for secondary metabolites with antifungal activity were identified in the genome. Lipopeptides, including fengycin secreted by TJS119 exhibit antifungal activity. Application of TJS119 for the biocontrol against green muscardine disease increased the viability of white-spotted flower chafer by 94.7% compared to the control. Discussion: These results indicate that B. velezensis TJS119 is a potential biocontrol agent for insect pathogens.

5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673783

RESUMEN

The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from Artemisia annua L.-sweet wormwood), steviol glycosides (an intense sweetener from Stevia rebaudiana Bert.-stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from Echinacea purpurea (L.) Moench-echinacea and Cichorium intybus L.-chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from Arnica montana L.-mountain arnica), parthenolide ("medieval aspirin" from Tanacetum parthenium (L.) Sch.Bip.-feverfew), and silymarin (liver-protective medicine from Silybum marianum (L.) Gaertn.-milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments.


Asunto(s)
Asteraceae , Metabolismo Secundario , Asteraceae/metabolismo , Asteraceae/crecimiento & desarrollo , Biomasa , Plantas Medicinales/metabolismo , Plantas Medicinales/crecimiento & desarrollo
6.
Appl Microbiol Biotechnol ; 108(1): 102, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38212961

RESUMEN

Bacteria belonging to the genus Algoriphagus have been isolated from various sources, such as Antarctic sea ice, seawater, and sediment, and some strains are known to produce orange to red pigments. However, the pigment composition and biosynthetic genes have not been fully elucidated. A new red-pigmented Algoriphagus sp. strain, oki45, was isolated from the surface of seaweed collected from Senaga-Jima Island, Okinawa, Japan. Genome comparison revealed oki45's average nucleotide identity of less than 95% to its closely related species, Algoriphagus confluentis NBRC 111222 T and Algoriphagus taiwanensis JCM 19755 T. Comprehensive chemical analyses of oki45's pigments, including 1H and 13C nuclear magnetic resonance and circular dichroism spectroscopy, revealed that the pigments were mixtures of monocyclic carotenoids, (3S)-flexixanthin ((3S)-3,1'-dihydroxy-3',4'-didehydro-1',2'-dihydro-ß,ψ-caroten-4-one) and (2R,3S)-2-hydroxyflexixanthin ((2R,3S)-2,3,1'-trihydroxy-3',4'-didehydro-1',2'-dihydro-ß,ψ-caroten-4-one); in particular, the latter compound was new and not previously reported. Both monocyclic carotenoids were also found in A. confluentis NBRC 111222 T and A. taiwanensis JCM 19755 T. Further genome comparisons of carotenoid biosynthetic genes revealed the presence of eight genes (crtE, crtB, crtI, cruF, crtD, crtYcd, crtW, and crtZ) for flexixanthin biosynthesis. In addition, a crtG homolog gene encoding 2,2'-ß-hydroxylase was found in the genome of the strains oki45, A. confluentis NBRC 111222 T, and A. taiwanensis JCM 19755 T, suggesting that the gene is involved in 2-hydroxyflexixanthin synthesis via 2-hydroxylation of flexixanthin. These findings expand our knowledge of monocyclic carotenoid biosynthesis in Algoriphagus bacteria. KEY POINTS: • Algoriphagus sp. strain oki45 was isolated from seaweed collected in Okinawa, Japan. • A novel monocyclic carotenoid 2-hydroxyflexixanthin was identified from strain oki45. • Nine genes for 2-hydroxyflexixanthin biosynthesis were found in strain oki45 genome.


Asunto(s)
Carotenoides , Agua de Mar , Agua de Mar/microbiología , Bacterias/genética , Oxigenasas de Función Mixta/genética , Familia de Multigenes , Filogenia , Ácidos Grasos/química , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
7.
Arch Microbiol ; 205(9): 322, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644212

RESUMEN

Iron is one of the highly abundant elements on the earth's crust, an essential micronutrient for a majority of life forms, and exists in two frequent oxidation states such as ferrous (Fe2+) and ferric (Fe3+). These two oxidation states are interconvertible by redox reactions and form complexes with a wide range of siderophores. At neutral pH in soil, Fe2+ is highly soluble upto 100 mM but have less biological value, whereas Fe3+ is less soluble upto 10-9 M. This reduced bioavailability of Fe3+ induces competition among microorganisms. As many microorganisms need at least 10-6 M of Fe3+ form of iron for their growth, siderophores from these microbes readily withdraw Fe3+ iron from a variety of habitats for their survival. In this review, we bring into light the several recent investigations related to diverse chemistry of microbial siderophores, mechanisms of siderophore uptake, biosynthetic gene clusters in microbial genomes, various sources of heavy metal cations in soil, siderophore-binding protein receptors and commercialisation perspectives of siderophores. Besides, this review unearths the recent advancements in the characterisation of novel siderophores and its heavy metal complexes alongside the interaction kinetics with receptors.


Asunto(s)
Metales , Sideróforos , Hierro , Transporte Biológico , Cationes
8.
Food Technol Biotechnol ; 61(2): 226-237, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37457907

RESUMEN

Research background: Lactic acid bacteria (LAB) are known to produce folate. However, this ability is highly strain-dependent. Folate synthesis in specific LAB strains is affected by the availability of folate, which can be consumed by other LAB under certain conditions. Moreover, differences in folate synthesis capabilities are related to the presence of folate biosynthesis-related genes and regulation of this pathway. Experimental approach: As basic information to better understand the regulation of folate biosynthesis among different LAB species and strains, folate biosynthetic genes were screened and identified in folate-producing and non-folate-producing LAB isolated from various local food sources in Indonesia. The extracellular folate productivity amounts of the isolates were analyzed using high-performance liquid chromatography with a diode array detector (HPLC-DAD). Results and conclusions: Eleven of the thirteen tested LAB isolates had all of the eight genes involved in folate biosynthesis (folE, folQ, folB, folK, folP, folC1, folA and folC2). Furthermore, these isolates produced extracellular folate ranging from 10.37 to 31.10 µg/mL. In contrast, two non-folate-producing isolates lacked several folate biosynthetic genes, such as folQ, folP and folA, which is possibly the reason for their inability to synthesize folate de novo. Phylogenetic tree construction revealed that the folate biosynthetic genes (excluding folK and folP) from six distinct species of folate-producing LAB isolates were monophyletic with homologous genes from other LAB species in the database. Novelty and scientific contribution: In this study, the distribution of folate biosynthetic genes in various LAB species was determined. The findings from this research support the use of folate biosynthesis marker genes in the genotypic screening for folate-producing LAB.

9.
Front Plant Sci ; 14: 1230664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396644
10.
Microbiol Spectr ; 11(4): e0150123, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409950

RESUMEN

Microbial secondary metabolites play crucial roles in microbial competition, communication, resource acquisition, antibiotic production, and a variety of other biotechnological processes. The retrieval of full-length BGC (biosynthetic gene cluster) sequences from uncultivated bacteria is difficult due to the technical constraints of short-read sequencing, making it impossible to determine BGC diversity. Using long-read sequencing and genome mining, 339 mainly full-length BGCs were recovered in this study, illuminating the wide range of BGCs from uncultivated lineages discovered in seawater from Aoshan Bay, Yellow Sea, China. Many extremely diverse BGCs were discovered in bacterial phyla such as Proteobacteria, Bacteroidota, Acidobacteriota, and Verrucomicrobiota as well as the previously uncultured archaeal phylum "Candidatus Thermoplasmatota." The data from metatranscriptomics showed that 30.1% of secondary metabolic genes were being expressed, and they also revealed the expression pattern of BGC core biosynthetic genes and tailoring enzymes. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional expression of BGCs in environmental processes. IMPORTANCE Genome mining of metagenomic data has become the preferred method for the bioprospecting of novel compounds by cataloguing secondary metabolite potential. However, the accurate detection of BGCs requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until recently with new long-read technologies. We used high-quality metagenome-assembled genomes generated from long-read data to determine the biosynthetic potential of microbes found in the surface water of the Yellow Sea. We recovered 339 highly diverse and mostly full-length BGCs from largely uncultured and underexplored bacterial and archaeal phyla. Additionally, we present long-read metagenomic sequencing combined with metatranscriptomic analysis as a potential method for gaining access to the largely underutilized genetic reservoir of specialized metabolite gene clusters in the majority of microbes that are not cultured. The combination of long-read metagenomic and metatranscriptomic analyses is significant because it can more accurately assess the mechanisms of microbial adaptation to the environment through BGC expression based on metatranscriptomic data.


Asunto(s)
Bacterias , Metagenómica , Metagenómica/métodos , Bacterias/genética , Metagenoma , Archaea/genética , Bacteroidetes/genética
11.
J Agric Food Chem ; 71(27): 10393-10402, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37358831

RESUMEN

The low levels of bioactive metabolites in target plants present a bottleneck for the functional food industry. The major disadvantage of soy leaves is their low phytoestrogen content despite the fact that these leaves are an enriched source of flavonols. Our study demonstrated that simple foliar spraying with 1-aminocyclopropane-1-carboxylic acid (ACC) significantly enhanced the phytoestrogen contents of the whole soy plant, including its leaves (27-fold), stalks (3-fold), and roots (4-fold). In particular, ACC continued to accelerate the biosynthesis pathway of isoflavones in the leaves for up to 3 days after treatment, from 580 to 15,439 µg/g. The detailed changes in the levels of this metabolite in soy leaves are disclosed by quantitative and metabolomic analyses based on HPLC and UPLC-ESI-TOF/MS. The PLS-DA score plot, S-plot, and heatmap provide comprehensive evidence to clearly distinguish the effect of ACC treatment. ACC was also proved to activate a series of structural genes (CHS, CHR, CHI, IFS, HID, IF7GT, and IF7MaT) along the isoflavone biosynthesis pathway time-dependently. In particular, ACC oxidase genes were turned on 12 h after ACC treatment, which was rationalized to start activating the synthetic pathway of isoflavones.


Asunto(s)
Isoflavonas , Isoflavonas/metabolismo , Glycine max/química , Fitoestrógenos , Vías Biosintéticas , Aceleración
12.
BMC Plant Biol ; 23(1): 264, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37202722

RESUMEN

BACKGROUND: Flavor contributes to the sensory quality of fruits, including taste and aroma aspects. The quality of foods is related to their flavor-associated compounds. Pear fruits have a fruity sense of smell, and esters are the main contributor of the aroma. Korla pear are well known due to its unique aroma, but the mechanism and genes related to volatile synthesis have not been fully investigated. RESULTS: Flavor-associated compounds, including 18 primary metabolites and 144 volatiles, were characterized in maturity fruits of ten pear cultivars from five species, respectively. Based on the varied metabolites profiles, the cultivars could be grouped into species, respectively, by using orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 14 volatiles were selected as biomarkers to discriminate Korla pear (Pyrus sinkiangensis) from others. Correlation network analysis further revealed the biosynthetic pathways of the compounds in pear cultivars. Furthermore, the volatile profile in Korla pear throughout fruit development was investigated. Aldehydes were the most abundant volatiles, while numerous esters consistently accumulated especially at the maturity stages. Combined with transcriptomic and metabolic analysis, Ps5LOXL, PsADHL, and PsAATL were screened out as the key genes in ester synthesis. CONCLUSION: Pear species can be distinguished by their metabolic profiles. The most diversified volatiles as well as esters was found in Korla pear, in which the enhancement of lipoxygenase pathway may lead to the high level of volatile esters at maturity stages. The study will benefit the fully usage of pear germplasm resources to serve fruit flavor breeding goals.


Asunto(s)
Pyrus , Compuestos Orgánicos Volátiles , Ésteres/metabolismo , Fitomejoramiento , Frutas , Metaboloma , Perfilación de la Expresión Génica , Compuestos Orgánicos Volátiles/metabolismo
13.
Arch Microbiol ; 205(2): 66, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645481

RESUMEN

Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia. This bacterium possessed a 4.2 Mb circular chromosome and a 54,370 bp plasmid. A total of 4067 predicted protein-coding sequences, 87 tRNA genes, and 25 rRNA operons were identified using PGAP. Based on ANI and dDDH analysis, the Aquitalea sp. USM4 is highly similar to Aquitalea pelogenes. We also identified genes, including acetyl-CoA (phaA), acetoacetyl-CoA (phaB), PHA synthase (phaC), enoyl-CoA hydratase (phaJ), and phasin (phaP), which play an important role in PHA production in Aquitalea sp. USM4. The heterologous expression of phaC1 from Aquitalea sp. USM4 in Cupriavidus necator PHB-4 was able to incorporate six different types of PHA monomers, which are 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), 3-hydroxyhexanoate (3HHx) and isocaproic acid (3H4MV) with suitable precursor substrates. This is the first complete genome sequence of the genus Aquitalea among the 22 genome sequences from 4 Aquitalea species listed in the GOLD database, which provides an insight into its genome evolution and molecular machinery responsible for PHA biosynthesis.


Asunto(s)
Betaproteobacteria , Genoma Bacteriano , Polihidroxialcanoatos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Betaproteobacteria/genética , Malasia , Poliésteres/metabolismo
14.
Protoplasma ; 260(2): 589-605, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35947211

RESUMEN

Chickpea, an important grain legume, suffers from considerable loss of yield due to Fusarium wilt disease. Inaccessibility of resistant gene pool among cultivars and lack of report of resistance, genes from alien sources have been the major constraints for resistance development in this valuable crop. However, along with some other transcription factors, MYB78 was significantly upregulated during chickpea-Fusarium interplay in resistant chickpea genotype. Being a highly recalcitrant species, the transformation of this important crop remained non-reproducible until recently. Following a tissue culture independent plumular meristem transformation protocol, introgression of CaMYB78 TF finally became feasible in chickpea. The overexpressed plants developed resistance against the pathogen but the anthocyanin production in transformed flowers was perturbed. In silico analyses of the anthocyanin biosynthetic key gene promoters reported the occurrence of multiple MYB-binding cis elements. Detailed molecular analyses establish the differential regulatory roles of CaMYB78, resistance response against Foc1 on one hand and suppression of pigmentation during flower development on the other, which is an innovative finding of its kind.


Asunto(s)
Cicer , Fusarium , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cicer/genética , Cicer/metabolismo , Antocianinas/metabolismo , Vías Biosintéticas , Enfermedades de las Plantas/genética
15.
Fish Shellfish Immunol Rep ; 5: 100104, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38162954

RESUMEN

Multi-modular enzyme complexes known as non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs) have been widely reported in bacteria that produce secondary bioactive metabolites such as non-ribosomal peptides (NRPs) and polyketides (PKs), respectively. These NRPS/PKS pathways contribute to synthesizing several antibiotics, such as vancomycin, rifamycin, and bleomycin, which are vital in human medicine. The present study aimed to isolate gut-associated bacteria from mud crab Scylla serrata, and detect NRPS and PKS gene clusters associated with it. This study included 36 bacterial isolates from five mud crab gut samples. Biosynthetic gene clusters (NRPS and PKS), were detected by PCR using degenerative primers specific to these genes. Three isolates (FKP2-4, FKP4-1, and FKP2-16) were positive for NRPS and two for PKS (FKP2-4 and FKP4-1) genes. The isolates were subjected to 16S rRNA gene amplification and sequenced. In silico analysis of the sequences using the Basic Local Alignment Search Tool (BLAST) identified the isolates FKP2-4, FKP4-1, and FKP2-16 as Acinetobacter variabilis, Vagococcus fluvialis, and Staphylococcus arlettae, respectively, after comparing with the existing sequences available in the National Center for Biotechnology Information (NCBI) database. Compared to the control, it was observed that these isolates exhibited intriguing antagonistic activities against Escherichia coli and Staphylococcus aureus. However, these isolates failed to show significant activity against Candida albicans. Exopolysaccharide production by the isolated organisms was tested using Zobell marine agar (ZMA) with 5% sucrose, but none of the colonies were mucoid or slimy.

16.
Mol Biol Rep ; 49(12): 12029-12037, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36273337

RESUMEN

BACKGROUND: Bitter melon (Momordica charantia L.) is a widely cultivated food and medicinal plant native to the world's subtropics and tropics. Constraints affecting cultivation of Bitter melon affect productivity of ß-carotene. Knowing the mechanism that controls the transcription of the ß-carotene biosynthesis genes in Bitter melon will be of great value in improving the yield of this important metabolite. METHODS AND RESULTS: The expressions of ß-carotene biosynthetic genes such as Phytoene Desaturase (PDS) and Phytoene Synthase (PSY) were evaluated in Bitter melon accessions 'GBK027049', 'NS1026', 'Mahy-ventura', '453B' and 'Sibuka532'. Transcript expression level analysis of PSY and PDS, and amount of ß-carotene in leaf, stem, and fruit, were determined using quantitative polymerase chain reaction and high-performance liquid chromatography (HPLC). Root transcript expression was used as a negative control for determining relative fold change in other tissues. Expression of PSY in fruit (6 to 27-fold compared to the control) was higher than in the other organs for all accessions. This was also the case of PDS expression (10 to 29-fold compared to the control). Leaves had the highest ß-carotene concentration (17.92-45.35 µg∙g-1); there was no difference between stems (5.67-12.75 µg∙g-1) and fruit (6.18-12.53 µg∙g-1). The highest ß-carotene content was in accessions 'GBK027049' (12.53-45.35 µg∙g-1) and '453B' (6.18-32.09 µg∙g-1). The PSY and PDS expressions were positively correlated with amount of ß-carotene in leaves, stems, and fruits. CONCLUSION: Bitter melon leaves, especially those of 'GBK027049' and '453B' accessions, are an alternative to alleviate the ß-carotene deficiencies in the world and especially in Africa.


Asunto(s)
Momordica charantia , Momordica charantia/genética , beta Caroteno , Kenia
17.
J Plant Res ; 135(6): 705-722, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36036859

RESUMEN

Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Plantas/genética , Redes y Vías Metabólicas/genética
18.
Curr Microbiol ; 79(10): 298, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002540

RESUMEN

Multi-resistant bacterial pathogens are a major public health problem for treating nosocomial infections owing to their high resistance to antibiotics. The objective of this research was to characterize the bioactive molecules secreted by a novel moderately halophilic actinobacterium strain, designated GSB-11, exhibiting a strong antagonistic activity against several multidrug-resistant pathogenic bacteria. This potential strain was identified by phenotypic, genotypic (16S rRNA), and phylogenetic analyses. GSB-11 was related to "Streptomyces acrimycini" NBRC 12736 T with 99.59% similarity. Molecular screening by PCR assay demonstrated that the strain possesses two biosynthetic genes coding for NRPS and PKS-II. Two active compounds GSB11-6 and GSB11-7 were extracted from the cell-free culture supernatant of Bennett medium and purified using reversed-phase HPLC. According to spectrometric (mass spectrum) and spectroscopic (1H NMR, 13C NMR, 1H-1H COSY, and 1H-13C HMBC) spectra analyses, the compounds GSB11-6 and GSB11-7 were identified to be maculosin and N-acetyltyramine, respectively. Their minimum inhibitory concentrations (MIC) revealed interesting values against certain multidrug-resistant pathogenic bacteria. They were between 5 and 15 mg/mL for GSB11-6, 10 and 30 mg/mL for GSB11-7. To our best knowledge, this is the first study of these active substances isolated from "Streptomyces acrimycini" showing an interesting antibacterial activity. Therefore, these essential compounds could be candidates for future research against multidrug-resistant bacteria.


Asunto(s)
Microbiología del Suelo , Streptomyces , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos , Filogenia , Piperazinas , ARN Ribosómico 16S/genética , Tiramina/análogos & derivados
19.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806236

RESUMEN

Lesion mimic mutants (LMMs) are ideal materials for studying cell death and resistance mechanisms. Here, we identified and mapped a novel rice LMM, g380. The g380 exhibits a spontaneous hypersensitive response-like cell death phenotype accompanied by excessive accumulation of reactive oxygen species (ROS) and upregulated expression of pathogenesis-related genes, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). Using a map-based cloning strategy, a 184,916 bp deletion on chromosome 2 that overlaps with the diterpenoid biosynthetic gene cluster was identified in g380. Accordingly, the content of diterpenoids decreased in g380. In addition, lignin, one of the physical lines of plant defense, was increased in g380. RNA-seq analysis showed 590 significantly differentially expressed genes (DEG) between the wild-type 9311 and g380, 585 of which were upregulated in g380. Upregulated genes in g380 were mainly enriched in the monolignol biosynthesis branches of the phenylpropanoid biosynthesis pathway, the plant-pathogen interaction pathway and the phytoalexin-specialized diterpenoid biosynthesis pathway. Taken together, our results indicate that the diterpenoid biosynthetic gene cluster on chromosome 2 is involved in immune reprogramming, which in turn regulates cell death in rice.


Asunto(s)
Diterpenos , Oryza , Xanthomonas , Muerte Celular/genética , Resistencia a la Enfermedad/genética , Diterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Xanthomonas/genética
20.
PeerJ ; 10: e13675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782100

RESUMEN

Stevia rebaudiana (Bertoni) Bertoni is a plant of economic interest in the food and pharmaceutical industries due its steviol glycosides (SG), which are rich in metabolites that are 300 times sweeter than sucrose. In addition, S. rebaudiana plants contain phenolic compounds and flavonoids with antioxidant activity. Endophytic bacteria promote the growth and development and modulate the metabolism of the host plant. However, little is known regarding the role of endophytic bacteria in the growth; synthesis of SG, flavonoids and phenolic compounds; and the relationship between trichome development and specialized metabolites in S. rebaudiana, which was the subject of this study. The 12 bacteria tested did not increase the growth of S. rebaudiana plants; however, the content of SG increased with inoculation with the bacteria Enterobacter hormaechei H2A3 and E. hormaechei H5A2. The SG content in leaves paralleled an increase in the density of glandular, short, and large trichome. The image analysis of S. rebaudiana leaves showed the presence of SG, phenolic compounds, and flavonoids principally in glandular and short trichomes. The increase in the transcript levels of the KO, KAH, UGT74G1, and UGT76G1 genes was related to the SG concentration in plants of S. rebaudiana inoculated with E. hormaechei H2A3 and E. hormaechei H5A2. In conclusion, inoculation with the stimulating endophytes E. hormaechei H2A3 and E. hormaechei H5A2 increased SG synthesis, flavonoid content and flavonoid accumulation in the trichomes of S. rebaudiana plants.


Asunto(s)
Stevia , Stevia/genética , Tricomas/genética , Expresión Génica , Flavonoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA