Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Chem ; 12: 1425953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119516

RESUMEN

Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.

2.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125859

RESUMEN

Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery.


Asunto(s)
Sistema Libre de Células , Ponzoñas , Animales , Ponzoñas/metabolismo
3.
Toxicol Rep ; 13: 101693, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39131696

RESUMEN

The Vanilla genus is crucial for global production in food, perfume, and pharmaceutical industries. However, exploitation threatens some species, leading to extinction. Traditional communities use vanilla for medicinal purposes, and there are species like Vanilla chamissonis Klotzsch and Vanilla bahiana Hoehne with potential to occupy the market. For this, methanolic extraction of these two mentioned species was conducted alongside Vanilla planifolia. Analyzes of the cell viability, mutagenic and genotoxic potential were performed. In the Ames test, the assays were performed with concentrations from 0.5 and 5000 µg/ml and on five strains. Only Vanilla planifolia exhibited mutagenicity at the highest concentration in the TA98 strain. Viability tests were performed within a dose range of 0.05-5000 µg/ml and 24, 48, and 72-hour exposures. It was possible to observe a reduction in cell viability observed only at the highest concentration, for all three species and both cell types tested. Genotoxicity induction by the extracts was assessed at concentrations from 0.5 to 500 µg/ml through the cytokinesis-block micronucleus assay. No genotoxic damage or reduction in the Nucleus Division Index (NDI). The study found no mutagenicity, cytotoxicity, or genotoxicity in the species tested, indicating potential human use for food or pharmaceutical purposes.

4.
Microorganisms ; 12(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065164

RESUMEN

Microorganisms have significant potential to control fungal contamination in various foods. However, the identification of strains that exhibit robust antifungal activity poses challenges due to highly context-dependent responses. Therefore, to fully exploit the potential of isolates as antifungal agents, it is crucial to systematically evaluate them in a variety of biotic and abiotic contexts. Here, we present an adaptable and scalable method using a robotic platform to study the properties of 1022 isolates obtained from maple sap. We tested the antifungal activity of isolates alone or in pairs on M17 + lactose (LM17), plate count agar (PCA), and sucrose-allantoin (SALN) culture media against Kluyveromyces lactis, Candida boidinii, and Saccharomyces cerevisiae. Microorganisms exhibited less often antifungal activity on SALN and PCA than LM17, suggesting that the latter is a better screening medium. We also analyzed the results of ecological interactions between pairs. Isolates that showed consistent competitive behaviors were more likely to show antifungal activity than expected by chance. However, co-culture rarely improved antifungal activity. In fact, an interaction-mediated suppression of activity was more prevalent in our dataset. These findings highlight the importance of incorporating both biotic and abiotic factors into systematic screening designs for the bioprospection of microorganisms with environmentally robust antifungal activity.

5.
Hist Philos Life Sci ; 46(2): 17, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565750

RESUMEN

This article reformulates Stephan Helmreich´s the ¨microbiomisation of race¨ as the historiality of otherness in the foundations of human microbiome science. Through the lens of my ethnographic fieldwork of a transnational community of microbiome scientists that conducted a landmark human microbiome research on indigenous microbes and its affiliated and first personalised microbiome initiative, the American Gut Project, I follow and trace the key actors, experimental systems and onto-epistemic claims in the emergence of human microbiome science a decade ago. In doing so, I show the links between the reinscription of race, comparative research on the microbial genetic variation of human populations and the remining of bioprospected data for personalised medicine. In these unpredictable research movements, the microbiome of non-Western peoples and territories is much more than a side project or a specific approach within the field: it constitutes the nucleus of its experimental system, opening towards subsequent and cumulative research processes and knowledge production in human microbiome science. The article demonstrates that while human microbiome science is articulated upon the microbial 'makeup' of non-wester(nised) communities, societies, and locales, its results and therapeutics are only applicable to medical conditions affecting rich nations (i.e., inflammatory, autoimmune, and metabolic diseases). My reformulation of ¨microbiomisation of race¨ as the condition of possibility of human microbiome science reveals that its individual dimension is sustained by microbial DNA data from human populations through bioprospecting practices and gains meaning through personalised medicine initiatives, informal online networks of pseudoscientific and commodified microbial-related evidence.


Asunto(s)
Microbiota , Humanos , Estados Unidos , Grupos Raciales
6.
Microorganisms ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543532

RESUMEN

Soil salinization is negatively affecting soils globally, and the spread of this problem is of great concern due to the loss of functions and benefits offered by the soil resource. In the present study, we explored the diversity of halophilic and halotolerant microorganisms in the arable fraction of a sodic-saline soil without agricultural practices and two soils with agricultural practices (one sodic and one saline) near the geothermal area "Los Negritos" in Villamar, Michoacán state. This was achieved through their isolation and molecular identification, as well as the characterization of their potential for the production of metabolites and enzymes of biotechnological interest under saline conditions. Using culture-dependent techniques, 62 halotolerant and moderately halophilic strains belonging to the genera Bacillus, Brachybacterium, Gracilibacillus, Halobacillus, Halomonas, Kocuria, Marinococcus, Nesterenkonia, Oceanobacillus, Planococcus, Priestia, Salibactetium, Salimicrobium, Salinicoccus, Staphylococcus, Terribacillus, and Virgibacillus were isolated. The different strains synthesized hydrolytic enzymes under 15% (w/v) of salts, as well as metabolites with plant-growth-promoting (PGP) characteristics, such as indole acetic acid (IAA), under saline conditions. Furthermore, the production of biopolymers was detected among the strains; members of Bacillus, Halomonas, Staphylococcus, and Salinicoccus showed extracellular polymeric substance (EPS) production, and the strain Halomonas sp. LNSP3E3-1.2 produced polyhydroxybutyrate (PHB) under 10% (w/v) of total salts.

7.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413638

RESUMEN

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Asunto(s)
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospección , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
8.
Cells ; 12(24)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132119

RESUMEN

The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.


Asunto(s)
Kéfir , Úlcera Gástrica , Ratones , Animales , Masculino , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Úlcera Gástrica/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Interleucina-10 , NADPH Oxidasa 2 , Factor de Necrosis Tumoral alfa/efectos adversos , Especies Reactivas de Oxígeno/efectos adversos , Péptidos/uso terapéutico
9.
J Biotechnol ; 377: 1-12, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37806388

RESUMEN

Studies involving endophytic fungi aim to identify organisms inhabiting extreme and relatively unexplored environments, as these fungi possess unique characteristics and uncommon biochemical pathways that enable them to produce compounds with biotechnological potential. Among various enzymes, L-Asparaginase is employed in the treatment of Acute Lymphoblastic Leukemia. In this study, we identified endophytic fungi from Sanionia uncinata and Polytrichastrum alpinum collected on King George Island in Antarctica. The fungi were categorized into morphological groups based on their characteristics, molecularly identified, and assessed for L-Asparaginase (L-ASNase) enzyme production. Subsequently, production optimization was conducted. A total of 161 endophytes were isolated from 504 moss gametophytes, with 107 originating from P. alpinum and 54 from S. uncinata. These isolates were categorized into 31 morphotypes. Fungi exhibiting high enzyme production were identified molecularly. Among them, nine identified isolates belonged to the genera Aspergillus, Collariella, Diaporthe, Epicoccum, Peroneutypa, Xylaria, and Trametes. Three of these isolates were identified at the species level through multigene phylogeny, namely Epicoccum nigrum, Collariella virescens, and Peroneutypa scoparia. All 31 fungi were subjected to solid media testing for L-ASNase enzyme production, with 22 isolates demonstrating production capability, and 13 of them produced L-ASNase free from Urease and Glutaminase. The isolates displaying solid media production underwent further testing in liquid media, all of which exhibited enzyme production ranging from 0.75 to 1.29 U g-1. Notably, the three fungi identified at the species level were the highest producers of the enzyme (1.29, 1.17, and 1.13 U g-1). The production of these fungi was optimized using the Taguchi method, resulting in production values ranging from 0.687 to 2.461 U g-1. In conclusion, our findings indicate that Antarctic moss endophytic fungi exhibit significant potential for the production of the anti-leukemic enzyme L-ASNase.


Asunto(s)
Briófitas , Briófitas/microbiología , Asparaginasa/genética , Ureasa , Glutaminasa , Regiones Antárticas , Trametes , Hongos , Endófitos/genética
10.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37627670

RESUMEN

Antibiotics are a staple in current medicine for the therapy of infectious diseases. However, their extensive use and misuse, combined with the high adaptability of bacteria, has dangerously increased the incidence of multi-drug-resistant (MDR) bacteria. This makes the treatment of infections challenging, especially when MDR bacteria form biofilms. The most recent antibiotics entering the market have very similar modes of action to the existing ones, so bacteria rapidly catch up to those as well. As such, it is very important to adopt effective measures to avoid the development of antibiotic resistance by pathogenic bacteria, but also to perform bioprospecting of new molecules from diverse sources to expand the arsenal of drugs that are available to fight these infectious bacteria. Filamentous fungi have a large and vastly unexplored secondary metabolome and are rich in bioactive molecules that can be potential novel antimicrobial drugs. Their production can be challenging, as the associated biosynthetic pathways may not be active under standard culture conditions. New techniques involving metabolic and genetic engineering can help boost antibiotic production. This study aims to review the bioprospection of fungi to produce new drugs to face the growing problem of MDR bacteria and biofilm-associated infections.

11.
Sci Total Environ ; 903: 166145, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579801

RESUMEN

The deep ocean is a rich reservoir of unique organisms with great potential for bioprospecting, ecosystem services, and the discovery of novel materials. These organisms thrive in harsh environments characterized by high hydrostatic pressure, low temperature, and limited nutrients. Hydrothermal vents and cold seeps, prominent features of the deep ocean, provide a habitat for microorganisms involved in the production and filtration of methane, a potent greenhouse gas. Methanotrophs, comprising archaea and bacteria, play a crucial role in these processes. This review examines the intricate relationship between the roles, responses, and niche specialization of methanotrophs in the deep ocean ecosystem. Our findings reveal that different types of methanotrophs dominate specific zones depending on prevailing conditions. Type I methanotrophs thrive in oxygen-rich zones, while Type II methanotrophs display adaptability to diverse conditions. Verrumicrobiota and NC10 flourish in hypoxic and extreme environments. In addition to their essential role in methane regulation, methanotrophs contribute to various ecosystem functions. They participate in the degradation of foreign compounds and play a crucial role in cycling biogeochemical elements like metals, sulfur, and nitrogen. Methanotrophs also serve as a significant energy source for the oceanic food chain and drive chemosynthesis in the deep ocean. Moreover, their presence offers promising prospects for biotechnological applications, including the production of valuable compounds such as polyhydroxyalkanoates, methanobactin, exopolysaccharides, ecotines, methanol, putrescine, and biofuels. In conclusion, this review highlights the multifaceted roles of methanotrophs in the deep ocean ecosystem, underscoring their ecological significance and their potential for advancements in biotechnology. A comprehensive understanding of their niche specialization and responses will contribute to harnessing their full potential in various domains.

12.
Microorganisms ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375101

RESUMEN

The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 µg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.

13.
Appl Microbiol Biotechnol ; 107(13): 4291-4300, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231159

RESUMEN

Cheese whey is the main by-product of dairy industries. It is used as a raw material for other value-added products, like whey protein concentrate. By using enzymes, this product can be further treated to obtain new higher value products, like whey protein hydrolysates. Proteases (EC: 3.4) represent a large segment of industrial enzymes, since they are used in several industries, including food. In this work, we describe three novel enzymes identified using a metagenomic approach. Metagenomic DNA from dairy industry stabilization ponds were sequenced, and the predicted genes were compared against the MEROPS database, focusing on families commercially used to produce whey protein hydrolysates. From a total of 849 candidates, 10 were selected for cloning and expression and three showed activities with both the chromogenic substrate, azocasein, and whey proteins. Particularly, Pr05, an enzyme from the yet uncultured phylum Patescibacteria, showed activity that is comparable to a commercial protease. All these novel enzymes could represent an alternative for dairy industries to produce value-added products from industrial by-products. KEY POINTS: • Over 19,000 proteases were predicted in a sequence-based metagenomic analysis. • Three proteases were successfully expressed and showed activity with whey proteins. • The enzyme Pr05 showed hydrolysis profiles of interest for food industry.


Asunto(s)
Queso , Péptido Hidrolasas , Humanos , Proteína de Suero de Leche/metabolismo , Péptido Hidrolasas/metabolismo , Hidrolisados de Proteína/análisis , Estanques , Suero Lácteo/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo
15.
Environ Res ; 227: 115785, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997039

RESUMEN

The production of secondary metabolites including biosurfactants by the Bacillus subtilis ANT_WA51 and the evaluation of its ability to leach metals and petroleum derivatives from the soil, using post-culture medium was investigated. The ANT_WA51 strain isolated from a pristine, harsh Antarctic environment produces the biosurfactants surfactin and fengycin, which reduce the surface tension of molasses-based post-culture medium to 26.6 mN m-1 at a critical micellization concentration (CMC) of 50 mg L-1 and a critical micelle dilution (CMD) of 1:19. The presence of biosurfactants and other secondary metabolites in the post-culture medium contributed to significant removal of xenobiotics from contaminated soils in the batch washing experiment - 70% hydrocarbons and 10-23% metals (Zn, Ni and Cu). The isolate's tolerance to different abiotic stresses, including freezing, freeze-thaw cycles, salinity (up to 10%), the presence of metals - Cr(VI), Pb(II), Mn(II), As(V) (up to 10 mM) and Mo(VI) (above 500 mM) and petroleum hydrocarbons (up to 20.000 mg kg-1) as well as the confirmed metabolic activity of these bacteria in toxic environments in the OxiTop® system indicate that they can be used directly in bioremediation. Comparative genomic analysis of this bacteria revealed a high similarity of its genome to the associated plant strains from America and Europe indicating the wide applicability of plant growth-promoting Bacillus subtilis and that the data can be extrapolated to a wide range of environmental strains. An important aspect of the study was to present the absence of inherent features which would indicate its clear pathogenicity enables its safe use in the environment. Based on the obtained results, we also conclude that the use of post-culture medium, obtained on low-cost byproducts like molasses, for leaching contaminants, especially hydrocarbons, is a promising bioremediation method that can be a replacement for the use of synthetic surfactants and provides a base for further large-scale research but the selection of an appropriate leaching may be dependent on the concentration of contaminants.


Asunto(s)
Petróleo , Contaminantes del Suelo , Oligoelementos , Bacillus subtilis/genética , Oligoelementos/análisis , Regiones Antárticas , Bioprospección , Hidrocarburos , Tensoactivos , Biodegradación Ambiental , Petróleo/análisis , Petróleo/metabolismo , Genómica , Contaminantes del Suelo/análisis
16.
Arch Microbiol ; 205(4): 121, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36934358

RESUMEN

The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.


Asunto(s)
Venenos de Serpiente , Staphylococcus aureus , Animales , Argentina , Venenos de Serpiente/farmacología , Bacterias , Antibacterianos/farmacología
17.
BMC Microbiol ; 23(1): 82, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966312

RESUMEN

BACKGROUND: The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αß (CS-αß) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS: Here, 23 genomes of ciliated protists were screened and two CS-αß defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION: These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.


Asunto(s)
Antiinfecciosos , Cilióforos , Defensinas , Antifúngicos/metabolismo , Cisteína , Defensinas/genética , Defensinas/farmacología , Simulación de Dinámica Molecular
18.
Metabolites ; 13(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36837855

RESUMEN

Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.

19.
BioTech (Basel) ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648832

RESUMEN

Enzymes have been highly demanded in diverse applications such as in the food, pharmaceutical, and industrial fuel sectors. Thus, in silico bioprospecting emerges as an efficient strategy for discovering new enzyme candidates. A new program called ProspectBIO was developed for this purpose as it can find non-annotated sequences by searching for homologs of a model enzyme directly in genomes. Here we describe the ProspectBIO software methodology and the experimental validation by prospecting for novel lipases by sequence homology to Candida antarctica lipase B (CaLB) and conserved motifs. As expected, we observed that the new bioprospecting software could find more sequences (1672) than a conventional similarity-based search in a protein database (733). Additionally, the absence of patent protection was introduced as a criterion resulting in the final selection of a putative lipase-encoding gene from Ustilago hordei (UhL). Expression of UhL in Pichia pastoris resulted in the production of an enzyme with activity towards a tributyrin substrate. The recombinant enzyme activity levels were 4-fold improved when lowering the temperature and increasing methanol concentrations during the induction phase in shake-flask cultures. Protein sequence alignment and structural modeling showed that the recombinant enzyme has high similarity and capability of adjustment to the structure of CaLB. However, amino acid substitutions identified in the active pocket entrance may be responsible for the differences in the substrate specificities of the two enzymes. Thus, the ProspectBIO software allowed the finding of a new promising lipase for biotechnological application without the need for laborious and expensive conventional bioprospecting experimental steps.

20.
Microb Cell Fact ; 21(1): 262, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528623

RESUMEN

BACKGROUND: Pyocyanin, a specific extracellular secondary metabolite pigment produced by Pseudomonas aeruginosa, exhibits redox activity and has toxic effects on mammalian cells, making it a new and potent alternative for treating cancer. Breast cancer (BC) treatment is now defied by acquired and de novo resistance to chemotherapy, radiation, or targeted therapies. Therefore, the anticancer activity of purified and characterized pyocyanin was examined against BC in our study. RESULTS: The maximum production of pyocyanin (53 µg/ml) was achieved by incubation of the highest pyocyanin-producing P. aeruginosa strain (P32) in pH-adjusted peptone water supplemented with 3% cetrimide under shaking conditions at 37 °C for 3 days. The high purity of the extracted pyocyanin was proven by HPLC against standard pyocyanin. The stability of pyocyanin was affected by the solvent in which it was stored. Therefore, the purified pyocyanin extract was lyophilized to increase its shelf-life up to one year. Using the MTT assay, we reported, for the first time, the cytotoxic effect of pyocyanin against human breast adenocarcinoma (MCF-7) with IC50 = 15 µg/ml while it recorded a safe concentration against human peripheral blood mononuclear cells (PBMCs). The anticancer potential of pyocyanin against MCF-7 was associated with its apoptotic and necrotic activities which were confirmed qualitatively and quantitively using confocal laser scanning microscopy, inverted microscopy, and flow cytometry. Caspase-3 measurements, using real-time PCR and western blot, revealed that pyocyanin exerted its apoptotic activity against MCF-7 through caspase-3 activation. CONCLUSION: Our work demonstrated that pyocyanin may be an ideal anticancer candidate, specific to cancer cells, for treating MCF-7 by its necrotic and caspase-3-dependent apoptotic activities.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Animales , Humanos , Femenino , Piocianina/metabolismo , Piocianina/farmacología , Pseudomonas aeruginosa/metabolismo , Caspasa 3/metabolismo , Células MCF-7 , Leucocitos Mononucleares/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA