Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 68-78, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39083893

RESUMEN

Carbon/metal composites derived from metal-organic frameworks (MOFs) have attracted widespread attention due to their excellent electronic conductivity, adjustable porosity, and outstanding stability. However, traditional synthesis methods are limited by the dense stereo geometry and large crystal grain size of MOFs, resulting in many metals active sites are buried in the carbon matrix. While the common strategy involves incorporating additional dispersed media into material, this leads to a decrease in practical metal content. In this study, nanosized copper-metal-organic frameworks (Cu-MOFs) are in-situ grown on surface of carbon spheres by pre-anchoring copper ions, and the hybrid composite of porous carbon/copper oxide with high copper atom utilization rate is prepared through activation and pyrolysis methods. This strategy effectively addresses the issue of insufficient exposure of metal sites, and the obtained composite material exhibits high effective copper atom utilization rate, large specific surface area (2052.3 m2·g-1), diverse pore structure, outstanding specific capacity (1076.5F·g-1 at 0.5 A·g-1), and excellent cycle stability. Furthermore, this highly atom-economical universal method has positive significance in application fields of catalysis, energy storage, and adsorption.

2.
J Environ Manage ; 359: 121058, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714036

RESUMEN

Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.


Asunto(s)
Carbón Orgánico , Frutas , Nanocompuestos , Verduras , Purificación del Agua , Nanocompuestos/química , Carbón Orgánico/química , Purificación del Agua/métodos , Frutas/química , Adsorción , Verduras/química , Contaminantes Químicos del Agua/química , Biomasa
3.
J Colloid Interface Sci ; 665: 772-779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554467

RESUMEN

Effectively managing oxygen-containing functional groups (OCFGs) within activated carbon and methodically elucidating their intricate types and proportions are essential for considerably improving the electrochemical performance of carbon-based supercapacitors. Herein, we designed a ZnCl2-based molecular regulation strategy to introduce OCFGs into ramie-activated carbon (RAC), managing different OCFGs and revealing their structure-activity relationship with electrochemical performance. Thus, this regulated RAC, with a 3.5-fold enhancement in advantageous OCFGs (a-OCFGs: CO and COO), exhibits a supreme specific capacitance of 286.4F g-1 at 1 A/g and an excellent capacitance retention rate of 89.7 % at 20 A/g in an aqueous electrolyte, considerably surpassing that of nonregulated RAC (212.0F g-1 and 81.9 %). This confirms that a-OCFGs provide ample ion-storage accommodation and suppress solvent electronic oxidation, thereby enhancing electrochemical performance. Furthermore, its electrochemical performance is competitive with that of the commercial YP-50F (129.2F g-1 at 1 A/g). Therefore, this work not only highlights the contributions of specific OCFGs to high electrochemical performance but also designs a promising commercial electrode material to meet the demands of OCFGs-adequate carbon-based energy storage devices.

4.
Chemosphere ; 329: 138635, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37068612

RESUMEN

Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 µM to 1.0 mM with a 0.94 µM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.


Asunto(s)
Azitromicina , Microalgas , Modelos Químicos , Contaminantes Químicos del Agua , Adsorción , Azitromicina/química , Carbón Orgánico/química , Colorimetría , Concentración de Iones de Hidrógeno , Cinética , Preparaciones Farmacéuticas , Porosidad , Termodinámica , Contaminantes Químicos del Agua/química
5.
J Hazard Mater ; 431: 128591, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247739

RESUMEN

90Sr-containing radioactive wastewater during Fukushima nuclear accident (FNA) aroused extensive consideration for its disposal. Massive coexisted Na+ ions seriously inhibited Sr2+ removal, aggravating the expenditure of radioactive wastewater treatment. Herein, a chestnut shell derived porous carbon material modified with aryl diazonium salt (ADS) of sodium 4-aminoazobenzene-4'-sulfonate (SPAC) was developed as capacitive deionization electrode for selective removal of Sr2+ from saliferous radioactive wastewater. Based on ADS modification, the Sr2+ electrosorption capacity of SPAC electrode was improved to 33.11 mg g-1 with fast ion removal rate of 2.89 mg g-1 min-1, comparing with only 16.10 mg g-1 before modification. The isothermal adsorption and kinetics by SPAC electrode fitted well with Langmuir and pseudo-second-order model, achieving a maximum Sr2+ electrosorption capacity of 58.21 mg g-1, superior cycling stability, and excellent charge efficiency (77.63%). Fascinatingly, the SPAC electrode exhibited superhigh Sr2+ selectivity of 70.65 against Na+ in Na+-Sr2+ mixed solution with molar ratio of Na+:Sr2+ as 20:1. Density functional theory (DFT) simulation, combining with electrochemical and spectral analyses, revealed that the high overlap of electron cloud between Sr2+ ion and anionic sulfonic group (-SO3-) provided SPAC with remarkable selectivity of Sr2+ ion, and illustrated the ion-swapping mechanism of Sr2+ selectivity.


Asunto(s)
Aguas Residuales , Purificación del Agua , Adsorción , Carbono , Electrodos , Iones
6.
J Hazard Mater ; 424(Pt D): 127648, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815125

RESUMEN

N-doped biomass derived activated carbon (NBAC) with superhigh content of surface N atom (17.2 at.%) and microchannel structure was prepared successfully via one-step pyrolysis method using supramolecular melamine cyanurate (MCA) as nitrogen source, and the breakthrough sulfur capacity was very high up to 1872 mg/g for catalytic oxidation of H2S under room temperature. The superhigh content of N atoms (17.2 at.%) provided massive active sites for the catalytic oxidation of H2S and formation of sulfur radicals which further helped the dissociation of H2S and O2, resulting in continuous catalytic oxidation of H2S over NBAC after the coverage of nitrogenous sites by multilayer sulfur. Moreover, the microchannel structure with enhanced mesopore volume promoted the mass transfer of reactants and emigration of product elemental sulfur to form multilayer sulfur. This work could provide an insight into the NBAC with superhigh N-doping content for continuous catalytic oxidation of H2S at room temperature.


Asunto(s)
Carbón Orgánico , Sulfuro de Hidrógeno , Biomasa , Catálisis , Azufre
7.
Materials (Basel) ; 14(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443063

RESUMEN

The suitability of a new type of polyurethane-based composite carbon foam for several possible usages is evaluated and reported. A comparison of the properties of the as-prepared carbon foams was performed with widely available commercial biomass-derived activated carbon. Carbon foams were synthesized from polyurethane foams with different graphite contents through one-step activation using CO2. In this work, a carbon catalyst was synthesized with a moderately active surface (SBET = 554 m2/g), a thermal conductivity of 0.09 W/mK, and a minimum metal ion content of 0.2 wt%, which can be recommended for phosgene production. The composite carbon foams exhibited better thermal stability, as there is a very little weight loss at temperatures below 500 °C, and weight loss is slower at temperatures above 500 °C (phosgene synthesis: 550-700 °C). Owing to the good surface and thermal properties and the negligible metallic impurities, composite carbon foam produced from polyurethane foams are the best alternative to the conventional coconut-based activated carbon catalyst used in phosgene gas production.

8.
Environ Sci Pollut Res Int ; 28(42): 58969-58982, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31925698

RESUMEN

Activated carbons prepared from cashew nut shells by chemical activation with phosphoric acid were tested for the removal of acetaminophen. It was found that an increase in carbonization temperature resulted in increased pore volume and decreased amount of surface functional groups. Potentiometric titration analysis indicated that the majority of surface groups on carbons are acidic. Detailed surface characterization by FT-IR, XPS, and thermal analyses indicated the involvement of surface functional groups in the removal of acetaminophen either via hydrogen bonding or by acid hydrolysis. The carbon obtained at 600 °C, which contains high amount of carboxylic groups and high pore volume, exhibited the highest adsorption capacity. For this carbon, the removal of acetaminophen took place mostly via acid hydrolysis with the formation of p-aminophenol and acetic acid adsorbed on the surface. Carbon obtained at 400 °C was found to have the highest density of acidic functional groups, which resulted in dimerization reactions and pore blockage. No direct correlation was observed between the adsorption capacities of carbons and their textural or surface characteristics. This suggests the complexity of acetaminophen removal by the cashew nut shell-derived activated carbons, governed by their surface chemistry and supported by high surface area accessible via micro/mesopores.


Asunto(s)
Anacardium , Carbón Orgánico , Acetaminofén , Adsorción , Biomasa , Nueces , Espectroscopía Infrarroja por Transformada de Fourier
9.
Molecules ; 24(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861201

RESUMEN

A facile strategy, engineered for low-cost mass production, to synthesize biomass-derived activated carbon/reduced graphene oxide composite electrodes (GBPCs) by one-pot carbonization of blotting papers containing graphene oxide (GO) and zinc chloride (ZnCl2) was proposed. Benefitting from the water absorption characteristic of blotting papers in which the voids between the celluloses can easily absorb the GO/ZnCl2 solution, the chemical activation and reduction of GO can synchronously achieve via one-step carbonization process. As a result, the GBPCs deliver a large specific surface area to accumulate charge. Simultaneously, it provides high conductivity for electron transfer. The symmetric supercapacitor assembled with the optimal GBPCs in 6 M KOH electrolyte exhibits an excellent specific capacitance of 204 F g-1 (0.2 A g-1), outstanding rate capability of 100 F g-1 (20 A g-1). Meanwhile, it still keeps 90% of the initial specific capacitance over 10,000 cycles. The readily available raw material, effective chemical activation, simple rGO additive, and resulting electrochemical properties hold out the promise of hope to achieve low-cost, green, and large-scale production of practical activated carbon composite materials for high-efficiency energy storage applications.


Asunto(s)
Carbón Orgánico/química , Capacidad Eléctrica , Electrodos , Grafito/química , Algoritmos , Biomasa , Electroquímica , Porosidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA